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$21 5-9 I. SUMMARY 

Pyrolyt ic  mater ia ls  were evaluated f o r  construct ion of l iqu id  propel- 
l a n t  t h rus t  chambers. The mater ia ls  invest igated included pyrolyt ic  graphite,  
boron n i t r i d e ,  zirconium carbide and hafnium carbide.  

I n i t i a l  and steady s t a t e  s t r e s s e s  i n  free-standing pyrolyt ic  graphi te  
motors were analyzed f o r  severa l  possible  r e s idua l  s t r e s s  d i s t r ibu t ions  and an ap- 
proach t o  design optimization was s tudied.  The s t rength  of t h e  heat t r ea t ed  pyr'o- 
l y t i c  graphi te  cyl inders  evaluated experimentally was increased by severa l  d i f f e r e n  
annealing cycles a t  temperatures between 2000°F and 3200°F. 

Motor f i r i n g  t e s t s  of 25 pound and 100 pound t h r u s t  chambers showed 
boron n i t r i d e  t o  be i n f e r i o r  t o  pyrolyt ic  graphite i n  erosion/oxidation res i s tance  
t o  combustion gases containing water vapor. 

Comparative oxidation r a t e  t e s t s  with plasma and oxy-acetylene torches 
were performed on 17 pyrolyt ic  mater ia ls ,  with lowest oxidation r a t e s  obtained on a 
pyrolyt ic  zirconium carbide - graphi te  a l loy  and on magnesium oxide. 
l y t i c  mater ia ls  were t e s t ed  a t  room temperature f o r  compat ibi l i ty  with N2O4, 9% 
H202, MMH and Aerozine 50; none were a f fec ted .  
t o  Type 321 s t a i n l e s s  s t e e l  were unsuccessful due t o  delaminations and f r ac tu re  of 
t h e  pyrolyt ic  graphi te .  

Twelve pyro- 

Attempts t o  braze pyro ly t ic  graphit1 
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Free-standing pyrolyt ic  graphi te  s t ruc tu res  have a l so  been considered 
f o r  re -en t ry  nose cones and leading edges. During extensive t e s t i n g  and prototype 
production, it was fom'd t h a t  the  anisotropy which i s  responsible f o r  t h e  mater ia l '  
unusual proper t ies  a l so  c rea tes  some spec ia l  problems of a s eve r i ty  and complexity 
which had not been fforeseen. 

With t h e  c lose  concurrence of these  disappointing r e s u l t s  i n  severa l  
types of appl icat ion,  t h e  e a r l i e r  sentiment of extreme enthusiasm turned t o  one of 
skepticism regarding t h e  p o t e n t i a l i t i e s  of pyrolyt ic  graphi te .  However, the  devel- 
opment of new high temperature mater ia ls  has been a slow process, with many f a l e e  
s t a r t s  recorded f o r  every success. Therefore, with so few candidate mater ia ls  f o r  
use i n  very high temperature environments, it seems prudent t o  make a thorough, 
even though slow, search f o r  ways t o  u t i l i z e  and improve t h e  best proper t ies  of t h i  
mater ia l  while avoiding the  consequences of i t s  unfavorable cha rac t e r i s t i c s .  

Although in tens ive  e f f o r t s  had been made t o  use pyrolyt ic  graphi te  
coatings i n  propulsion system combustion chambers, t h e  p o s s i b i l i t y  of using f r ee -  
s tanding pyro ly t ic  graphi te  a s  t he  primary t h r u s t  chamber s t ruc tu re  was a t  f i r s t ,  
overlooked. The f i rs t  experimental f i r i n g  of such a t h r u s t  chamber was performed 
a t  t h e  J e t  Propulsion Laboratory, Cal i fornia  I n s t i t u t e  of Technology, i n  1961. 
Short ly  the rea f t e r ,  s imi l a r  t h r u s t  chambers were t e s t ed  a t  Marquardt using l iqu id  
propel lan ts .  Free-standing pyro ly t ic  graphi te  chambers a r e  p a r t i c u l a r l y  applicable 
t o  l iqu id  rockets f o r  space propulsion systems, which a re  f requent ly  designed f o r  
system optimization t o  operate  a t  chamber pressures  of 150 psia  or less. 

The motor f i r i n g s  a t  Marquardt were p a r t  of a program, sponsored by 
the  National Aeronautics and Space Administration, t o  inves t iga te  ana ly t i ca l ly  and 
experimentslly t h e  f e a s i b i l i t y  and advantages of using free-s tanding pyro ly t ic  
graphite o r  s imi la r  pyrolyt ic  mater ia ls  f o r  a rad ia t ion  cooled, l iqu id  rocket th rus  
chamber f o r  operat ion i n  space. 

During the  f irst  yea r ' s  work, reported i n  Reference 1, two small  f r e e -  
s tanding motors, with a t h roa t  diameter of 0.75 inch, were successfu l ly  t e s t ed  a t  a 
chamber pressure of 100 psia ,  using t h e  propel lants  N204/0.75 N2H4-0.25 MMH. 
motors were made of an a l l o y  of pyrolyt ic  graphi te  containing a small  amount of 
boron, which a t  t he  t i m e  was thought t o  increase the  s t r eng th  and oxidat ion r e s i s t -  
ance of t h e  pyro ly t ic  graphi te .  Throat erosion r a t e s  of about 0.2 mil/sec were 
measured a 

The 

Although both of t he  free-standing chambers t e s t ed  a t  Marquardt suc- 
ces s fu l ly  withstood a f i r i n g  chamber pressure of 100 ps ia  and a proof tes t  pressure 
of 135 psig,  it had been found by JPL t h a t  t he  r e l i a b i l i t y  of s imi l a r  motors i n  
proof t e s t i n g  was marginal, wBrtdh was attntbut81tl t o  t h e  residua&ssl2?e$se$ 
ex i s t ing  i n  the  free-s tanding chambers. Also, pyro ly t ic  graphi te  was known t o  be 
anisotropic ,  and the  e f f e c t  t h i s  condition would have on motor s t r e s s e s  and s t r eng t  
during operation was not known. 
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Th refore ,  s t r e s s  tudies of f r e e - s t  
Marquardt, and progressed t o  the  development of a 

nding motors were begun a t  
method of analysis  which would 

be applicable not only t o  the  analysis of res idua l  s t resses ,  but of operational 
s t resses  as well .  

Since the s t r u c t u r a l  capabi l i ty  of free-standing pyrolyt ic  graphite 
motors might not be s u f f i c i e n t  f o r  a l l  desired applications,  several  composite 
motors were designed t o  permit use of some of the  b e s t  propert ies  of t h e  material ,  
although w i t h  a s a c r i f i c e  of par t  of the  p o t e n t i a l  weight saving offered by t h e  
free-standing concept. The composite designs were based on use of a nozzle ma- 
chined i n  f l a t  pyrolyt ic  graphite disks,  w i t h  t h e  a-b plane normal t o  the  motor 
ax is .  
lems of seal ing and d i f f e r e n t i a l  thermal expansion of the chamber elements. 

' 

Tests of several  of these motors were p a r t i a l l y  successful but revealed prot 

I n  addi t ion t o  pyrolytic graphite,  a number of other  high temperature 
materials have been made by the  vapor deposit ion process, sometimes involving 
pyrolysis of t h e  source gas, other  times involving reduction or react ion between 
t h e  source gas and the substrate .  
never before avai lable ,  and t h e i r  a p p l i c a b i l i t y  t o  t h r u s t  chamber design was a l so  
included-in t h e  invest igat ion.  
res is tance i n  a water vapor bearing plasma torch, and severa l  free-standing motors 
of pyrolytic boron n i t r i d e  were purchased. 

I n  any case, these materials were i n  a form 

A number of the  materials were tes ted  f o r  oxidation 

This report  presents the  r e s u l t s  of a nine-month study which was a 
continuation of the f irst  y e a r ' s  work, and was directed toward t h e  following ob- 
jec t ives  : 

1. Analysis of the  s t r u c t u r a l  capabi l i ty  of free-standing t h r u s t  
chambers fabr icated from pyrolytic graphite and other  pyrolyt ic  
materials,  and d e f i n i t i o n  of  t h e  importance of mechanical proper- 
t ies  in-determining t h e i r  s t r u c t u r a l  capabi l i ty .  

2 .  Invest igat ion of the sources and possible remedies f o r  the prob- 
l e m s  of res idua l  s t r e s s  i n  pyrolyt ic  graphite.  

3 .  Design, fabr ica t ion  and t e s t  f i r i n g  of complete l iquid rocket 
t h r u s t  chamber assemblies fabr icated from the  most promising 
pyrolyt ic  r e f r a c t o r i e s .  

I n  order t o  achieve these object ives  the  following program was con- 
ducted: 

1. St ress  analysis  of free-standing pyrolyt ic  graphite motors was 
performed t o  determine s t r e s s e s  i n  the combustion chamber and 
nozzle throa t  walls f o r  various loading conditions of res idua l  
stress, i n i t i a l  motor f i r i n g  and steady s t a t e  motor f i r i n g .  A 
wide range of possible res idua l  stress d is t r ibu t ions  were con- 
sidered i n  order t o  es tab l i sh  whether or not t h e  s t r u c t u r a l  
capabi l i ty  of the  motors could be improved by some optimization 
of res idua l  s t r e s s .  

UNCLASSIFIED - 4 -  
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2 .  A program of experimental heat t r e a t i n g  and s t r u c t u r a l  t e s t i n g  
of free-standing pyrolyt ic  graphi te  cylinders was performed t o  
inves t iga te  the  poss ib l i t y  of modifying t h e  res iuda l  s t r e s ses  
o r  increasing t h e  s t rength  of t he  cyl inders .  The r e s u l t s  of 
t h e  t e s t i n g  program were examined for clues  t o  t h e  cause of 
r e s idua l  s t r e s s  and t h e  reason f o r  t h e  reduction of e f f ec t ive  
s t rength  of free-standing pyrolyt ic  graphite cylinders,  as  com- 
pared t o  the  s t rength  of f l a t  specimens. 

3 .  Motor f i r i n g s  of  composite design and free-standing pyrolyt ic  
graphite motors were performed. 
a conical  combustion chamber and expansion s k i r t ,  and was in -  
tended t o  be an optimum design t o  minimize res idua l  s t r e s s  
and motor-injector attachment weight. 
a l so  made t o  t e s t  t h e  oxidation res i s tance  of pyrolyt ic  boron 
n i t r i d e  i n  an ac tua l  combustion environment. 

Ten pyrolyt ic  mater ia ls  were tes ted  f o r  oxidation and erosion 
res i s tance  i n  a plasma torch containing water vapor, and f i v e  
mater ia ls  were tes ted  i n  an oxy-acetylene flame. 

The free-standing motor had 

Motor f i r i n g s  were 

4.  

3 .  The s t r u c t u r a l  capabi l i ty  of these  and o ther  new pyrolyt ic  
mater ia ls  was evaluated by observing t h e i r  b r i t t l e n e s s  and 
s t ruc tu re .  Two motors made of a new form of pyrolyt ic  graphite,  
known as  Pyroid, were purchased and examined by X-ray. 

The compatibil i ty of twelve pyrolyt ic  mater ia ls  i n  N2O4, 9@ 
H202, monomethyl hydrazine and 0.5-hydrazine-0.5 UDMH was de- 
termined by room temperature immersion t e s t s .  

6 .  

7. Attempts were made t o  develop techniques f o r  brazing pyrolyt ic  
graphite t o  s t a in l e s s  s t e e l ,  which i f  successful  would be very 
usefu l  a s  a l i g h t  weight attachment between motor and in j ec to r .  

UNCLASS I FI ED - 5 -  



REPORT 599c. 
MaVuani.. nnrna 

VAN NUYS, CALIFORNIA UNCLASSIFIED 

111. STRESS ANALYSIS 

A. General 

A s t r e s s  analysis  was made of free-standing pyrolyt ic  graphite motors, 
using a c y l i n d r i c a l  model t o  describe the combustion chamber and throa t  regions. 
The method of analysis  developed i s  applicable t o  other  pyrolyt ic  materials,  such 
as boron n i t r i d e ,  which have the same type of anisotropy as pyrolyt ic  graphite. 
However, a l l  numerical r e s u l t s  a r e  f o r  pyrolytic graphite which i s  the  only materia 
which has demonstrated s u f f i c i e n t  s t r u c t u r a l  capabi l i ty  t o  date .  
made t o  analyze s t resses  i n  regions of greater  geometrical complexity such as a t -  
tachment points or i n  the nozzle convergent region. 

No attempt was 

The stresses occurring i n  a free-standing pyrolyt ic  graphite motor 
were analyzed f o r  th ree  loading conditions, defined as follows: 

1. Residual Stresses  

These a r e  the  s t r e s s e s  which e x i s t  i n  pyrolytic graphite a t  room 
temperature (approximated as  O°F f o r  convenience) before any pres- 
sure or thermal s t r e s s e s  a re  imposed. 

2. Proof Stresses  

These a re  the s t r e s s e s  which occur i n  a motor a t  O°F a f t e r  the  
motor operating pressure i s  imposed, but before thermal s t r e s s e s  
due t o  motor operation have occurred. The circumferential  proof 
s t r e s s  i n  the  combustion chamber, usual ly  the  c r i t i c a l  s t r e s s  i n  
a free-standing motor, i s  c lose ly  approximated by the  s t r e s s  i n  
a combustion chamber during a s t a t i c  proof t e s t .  Howevers s ince 
the  throa t  i s  blocked during such a proof t e s t  r e s u l t i n g  i n  
chamber pressure a t  t he  throa t ,  the  throa t  circumferential stress 
during a proof t e s t  i s  greater  than the  throa t  proof s t r e s s  as 
defined here. 

3. Operating S t resses  

These a r e  the s t r e s s e s  which occur i n  a motor during steady state 
motor operation. The motor temperature d i s t r i b u t i o n  was taken t o  
be t h a t  which would r e s u l t  from the  use of N204/0.5 N2H4-C.5 T J M  
a t  an O/F r a t i o  of 2.0 and a C* ef f ic iency  of 95$0 
temperatures f o r  t h i s  propellant a r e  t y p i c a l  of those f o r  a number 
of other  propellants such as 02H2, N204/N2€14, and N2O4/O.75 N2H4- 

The motor 

0~25 w. 
B. Residual Stresses  

1. Anisotropic Stresses  

Changes of uniform temperature i n  pyrolyt ic  graphite cause s t r e s s e  
due t o  its anisotropic propert ies .  These anisotropic res idua l  s t r e s s e s  can be ca l -  
culated i.f t h e  pyrolytic graphite i s  assumed t o  be s t r e s s - f r e e  a t  some tempera.ture. 
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Residual s t r e s s e s  i n  a pyrolyt ic  graphi te  cylinder of thickness,  t, and inside 
radius,  ri, a r e  shown i n  Figures 1, 2, and 3 f o r  s t r e s s - f r e e  temperatures of 20OO0F 
and 4000°F, t h e  l a t t e r  being approximately the  deposit ion temperature. Extreme 
values of the  circumferential  and a x i a l  s t r e s s e s  almost always occur a t  the  cylinde 
surfaces, while maximum r a d i a l  s t r e s s e s  occur i n  t h e  center  of t h e  cylinder wal l .  
Radial tensi le  stress a t  a given thickness-radius r a t i o  i s  l e s s  during proof and 
operation :Loading conditions than t h e  res idua l  s t r e s s ,  so only the  res idua l  r a d i a l  
s t r e s s e s  a r e  presented i n  t h i s  report .  Since the res idua l  s t r e s s e s  a r e  automatical 
l y  defined by the s t r e s s - f r e e  temperature, t h e  various anisotropic  res idua l  s t r e s s  
d i s t r ibu t ions  w i l l  here inaf te r  be designated simply by t h e i r  s t r e s s - f r e e  tempera- 
t u r e .  

2. As-Deposited Stresses  i n  Cyl indrical  Combustion Chamber 

Residual s t r e s s e s  which have been measured i n  cylinders a r e  con- 
siderably d i f f e r e n t  than those predicted by anisotropic theory f o r  any s t r e s s - f r e e  
condition. Residual s t r e s s e s  measured i n  pyrolyt ic  graphite which has been de- 
posited on a female mandrel a r e  shown i n  Figures 4 and >, f o r  as-deposited material  
f o r  mater ia l  which has been annealed near 4000°F, and f o r  anisotropic  mater ia l  whic 
i s  s t r e s s - f r e e  a t  the  deposit ion temperature. Male mandrels cause much grea te r  
res idua l  s t r e s s e s  than female mandrels, and hence a r e  seldom used. Linear extrapo- 
l a t i o n s  of t h e  data points f o r  the as-deposited mater ia l  were used i n  defining re -  
s i d u a l  s t r e s s e s  f o r  the as-deposited mater ia l  a t  other  thickness-radius r a t i o s .  
The res idua l  s t r e s s e s  defined by l i n e a r  extrapolation w i l l  he re inaf te r  be designate 
as-deposited res idua l  s t r e s s e s .  Other data, not shown, confirm t h e  v a l i d i t y  of a 
l i n e a r  extrapolat ion f o r  circumferential  as-deposited res idua l  s t r e s s e s  on the  in- 
s i d e  surface, a t  l e a s t  t o  a thickness-radius r a t i o  of 0.09, and it i s  l i k e l y  t h a t  
such an extrapolation i s  j u s t i f i a b l e  f o r  outside su i face  circumferential  stresses. 
However, t h e  l i n e a r  extrapolations of a x i a l  s t r e s s e s  can only be j u s t i f i e d  by t h e  
lack of any b e t t e r  information, and subsequent conclusions regarding a x i a l  s t r e s s e s  
a t  thickness-radius r a t i o s  grea te r  than 0.05 o r  l e s s  than 0.03 must be considered 
t e n t a t i v e .  

It i s  important t o  r e a l i z e  a l so  t h a t  a c e r t a i n  amount of  sca t te r  
ex is t s  i n  the  experimental data, so  t h a t  the  res idua l  s t r e s s e s  i n  any p a r t i c u l a r  
p a r t  might e a s i l y  be as  much as 2000 p s i  g rea te r  or l e s s  than the  assumed as- 
deposited distr ' ibution. 

Two fac tors  which have been hypothesized as causing the difference 
between anisotropic and as-deposited s t resses ,  a r e  growth (var iab le  l a t t i c e  t rans-  
formation) during deposition, and s t r e s s e s  i n  growth cones (nodules) which a re  
always found i n  pyrolyt ic  graphite.  

a .  Nodules 

Nodules grow i n  pyrolyt ic  graphite from i r r e g u l a r i t i e s  on the 
mandrel surface.  It i s  predicted i n  Reference 2 t h a t  s t r e s s e s  due t o  t h e  nodules 
w i l l  be compressive on t h e  inside surface and t e n s i l e  on the  outs ide surface of 
cylinders deposited on female mandrels. It i s  a l s o  predicted i n  Reference 2 t h a t  
the  magnitude of nodule s t r e s s e s  w i l l  be greater  on the  outs ide surface than on t h e  
inside surface.  Some data were presented i n  Reference 2 which a r e  consis tent  with 
these predict ions and p a r t i a l  confirmation can be obtained from Figures 4 and 3 by 
determining t h e  increment from anisotropic s t r e s s e s  t o  as-deposited s t r e s s e s ,  as 
tabulated below: 
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Axial 

0.03 0.05 

-3750 -2720 

+4140 +2840 

AS-DEPOSImD RESIDUAL STRESS 
MINUS ANISOTROPIC RESILeAL STRESS 

I 

Circumferential 

0.03 0.05 

-3200 -2570 

+3220 +TO20 

Inside 

Outside 

The signs of the  stress increments tabulated above conform 
with the  predict ions of Reference 2 but the  magnitude of stress on the outside sur- 
face i s  s i g n i f i c a n t l y  greater  than the  s t r e s s  on the  inside surface i n  only two of 
t h e  four  cases tabulated above. The nodule s t r e s s e s  have not been equated quanti- 
t a t i v e l y  w i t h  t h e  difference between as-deposited and anisotropic s t r e s s e s .  Also, 
nodules a r e  usual ly  unevenly d is t r ibu ted  through pyrolyt ic  graphite, and it i s  
qui te  possible t h a t  s t r e s s  concentrations e x i s t  a t  some nodules which a r e  much 
grea te r  than t h e  magnitude of s t r e s s  indicated by the data tabulated above. 

b .  Growth 

Pyrolytic graphite permanently changes i t s  dimensions when it 

The r a t e  and t o t a l  amount of growth increase w i t h  
i s  exposed t o  temperatures above 4000°F, w i t h  elongation i n  the a-direct ion and 
contraction i n  the c-direct ion.  
temperature. Also, a small amount of growth occurs below 4000°F. It has been sug- 
gested t h a t  pyrolyt ic  graphite grows during deposition, so t h a t  the  mater ia l  de- 
posited f i r s t  w i l l  have a longer t i m e  f o r  growth than t h a t  deposited l a s t ,  leading 
t o  s t r e s s e s  within the  mater ia l .  However, an analysis  of the  s t resses  due t o  t h e  
growth ef fec t ,  with mater ia l  thickness a function of t i m e ,  has not been accomp1:lshel 
Therefore, the difference between anisotropic and as-deposited s t r e s s e s  cannot def- 
i n i t e l y  be correlated w i t h  growth a t  the  present t i m e .  I n  a d d i t i o n  t o  the d i f f i -  
c u l t y  of developing a method of analysis ,  t h e  e f f e c t s  of stress, temperature and 
t i m e  on the r a t e  and ult imate amount of' growth a r e  not known. References 3 and 4 
discuss t h e  advisabi l i ty  of using an empirical  method t o  invest igate  the e f f e c t  of 
growth during deposit ion.  However, no r e s u l t s  based upon t h i s  approach have been 
published. 

Stresses  due t o  growth a f t e r  deposit ion can be calculated by 
methods si.milar t o  those used i n  calculat ing res idua l  s t r e s s e s  due t o  cool down. 
The r e s u l t s  of such calculat ions a r e  shown i n  Figure 6. Growth i n  t h e  a-direct ion 
w a s  assumed t o  be 0.5, 1.0, and 2.@, while the contraction i n  the  c-direct ion was 
twice the amount of a-direct ion growth.. 
which a r e  t e n s i l e  a t  the inside surface and compressive a t  the outs ide surface.  
The amounts of a and c-direct ion growth used i n  t h e  calculat ions a r e  representat ive 
of the growth reported i n  Reference 3 f o r  annealing near 4000°F. A t  higher tempera 
tures ,  t h e  r a t i o  of c-direct ion contraction t o  a-direct ion growth i s  about 3 o r  4, 
which increases t h e  growth s t r e s s e s  even more. 

Figure 6 shows circumf;erential s t r e s s e s  
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3. As-DeDosited Stresses  a t  Throat 

Some of the  fac tors  which have been hypothesized as contributing 
t o  as-deposited res idua l  s t r e s s e s  i n  cylinders have been discussed above. 
the  geometry of the  throa t  region of a free-standing motor i s  even more complex,, 
and predictions of s t r e s s e s  here a re  d i f f i c u l t  because of t h e  undertain e f f e c t s  of 
t h e  mandrel on t h e  t h r o a t  and the  e f f e c t s  of t h e  throa t  geometry on anisotropic 
s t resses  due t o  uniform temperature changes or temperature gradients.  This un- 
c e r t a i n t y  i s  p a r t i c u l a r l y  t r u e  of a x i a l  stresses i n  t h e  throa t ,  which w i l l  be most 
affected by the  convergent-divergent geometry. 

However, 

Nearly a l l  of t h e  free-standing chambers which have been b u i l t  t o  
date have had a conventional th roa t  geometry of a C-D nozzle, w i t h  a contraction 
r a t i o  of about 4 and a radius of curvature about equal t o  t h e  throa t  diameter. A 
simple model f o r  analyzing throa t  s t r e s s e s  has been suggested by one of the  major 
pyrolyt ic  graphite manufacturers. This model assumes tha t  the e f f e c t  of the  t h r o a t  
curvature on the  a x i a l  s t r e s s  can be accounted f o r  by superposit ion of the stre,; c ses 
i n  a hypothetical  cylinder shown i n  Figure 7, positioned so t h a t  i t s  outside SUI:- 
face coincides with the  inside surface of the  nozzle and i t s  inside surface coin- 
cides with the  outs ide surface of the  nozzle. 

One experimentally measured value of a x i a l  res idua l  s t r e s s  was ob- 
ta ined from the  Je t  Propulsion Laboratory, California I n s t i t u t e  of Technology. The 
stress was for t h e  outs ide throa t  surface of a C-D nozzle which had a radius of 
curvature equal t o  the t h r o a t  diameter. I n  order t o  cor re la te  these data  w i t h  
ana ly t ica l  methods, th ree  conditions of res idua l  s t r e s s  behavior, were defined, a11 
based on a radius of curvature ( i . e . ,  radius of the  hypothetical  cylinder) equa:L t o  
the  nozzle t h r o a t  diameter. The three  conditions a r e  defined as follows: 

Condition 1 

Axial s t r e s s e s  equal t o  those of an as-deposited cylinder with the 
t h r o a t  thickness-radius r a t i o .  No e f f e c t  of hypothetical  cylinder 

Condition 2 

Superposition of a x i a l  s t r e s s e s  of an as-deposited cylinder w i t h  
t h e  t h r o a t  value of thickness-radius r a t i o ,  plus circumferential  
as-deposited s t r e s s e s  f o r  t h e  opposite surface of the hypothetical  
cylinder having half  t h e  throa t  thickness-radius r a t i o  (Figure 7) 

Condition 3 

Superposition of a x i a l  s t r e s s e s  of an as-deposited cylinder w i t h  
the  throa t  value of thickness-radius r a t i o ,  plus circumferential  
s t r e s s e s  f o r  t h e  opposite surface of the  hypothetical  cylinder,9 
s t r e s s - f r e e  a t  4000°F, and w i t h  half  the  throa t  thickness-radius 
r a t i o  (Figure 7) .  
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Condition 3 seems t o  be the  most l o g i c a l  assumption. It implies 
t h a t  the increment between anisotropic res idua l  s t r e s s e s  and as-deposited res idua l  
s t r e s s e s ,  whether it be due t o  nodules, growth or whatever, need only be applied 
once a t  the surfaces of the mokor, and t h a t  the  addi t iona l  e f f e c t  of t h e  hypothet ie  
cylinder can be explained s t r i c t l y  i n  terms of i t s  anisotropic behavior when heated 
or cooled. This type of behavior has been assumed throughout the report  i n  calcu- 
l a t i n g  operating s t r e s s e s .  That is, t h e  operating s t r e s s e s  a r e  t h e  r e s u l t  of super. 
posi t ion of s t r e s s e s  due t o  anisotropic mater ia l  behavior when heated from 0°F t o  
t h e  operating temperature d is t r ibu t ion ,  plus t h e  res idua l  s t resses ,  whether they be 
t h e o r e t i c a l  f o r  some assumed stress-free condition or t h e  as-deposited res idua l  
stresses. 

The calculated a x i a l  res idua l  s t r e s s e s  a t  the  t h r o a t  a r e  shown i n  
Good cor re la t ion  with Figure 8, h g e t h e r  with t h e  s ing le  experimental data point .  

Condition 3 is  shown. Therefore, although a s ingle  data point obviously does not 
completely resolve such a complicated s i tua t ion ,  Condition 3 behavior was assumed 
f o r  the  t h r o a t  a x i a l  res idua l  stresses. 

C .  Proof Stresses  

1. Combustion Chamber 

Proof s t r e s s e s  i n  the combustion chamber a r e  shown i n  Figures 9 
through 15 f o r  severa l  assumed r e s i d u a l  s t r e s s  conditions.  

It is  seen t h a t  an optimum thickness-radius r a t i o  e x i s t s  f o r  each 
res idua l  s t r e s s  condition and each chamber pressure, a t  which the  proof s t r e s s  i s  a 
minimum. (The obvious exception i s  f o r  0°F s t r e s s - f r e e  motors, which by definitf'on 
w i l l  experience only pressure stresses, which s t e a d i l y  decrease w i t h  increasing 
thickness-radius r a t i o s . )  If t h e  thickness-radius r a t i o  i s  decreased from the op- 
t i m u m  value, the stress w i l l  increase because of the pressure s t r e s s ;  i f  the  r a t i o  
is increased from t h e  optimum, the res idua l  stress w i l l  increase more rapidly than 
the  pressure stress decreases, so t h a t  again t h e  t o t a l  of t h e  two w i l l  increase.  
The circumferent ia l  proof s t r e s s  a t  the inside of t h e  combustion chamber for t h e  
optimum thickness-radius r a t i o  i s  shown i n  Figure 16. It i s  seen t h a t  the  minimum 
possible stress increases s t e a d i l y  w i t h  chamber pressure, implying t h a t  a f ree-  
standing pyrolyt ic  graphite motor w i l l  have a maximum permissible chamber pressure, 
which cannot be increased by making t h e  wal l  th icker .  

Figure 16 a l s o  shows a cross-hatched area which i s  an estimate of 
possible  s c a t t e r  f o r  as-deposited res idua l  stresses. One of the  most important con. 
clusions t o  be drawn from Figure 16 i s  tha t  the  as-deposited res idua l  stress con- 
d i t i o n  i s  more favorable f o r  proof loading than i f  the mater ia l  followed t h e  theo- 
r e t i c a l  predict ions for 3000" and 4000°F s t r e s s - f r e e  mater ia l .  The f a c t  t h a t  t h e  
as-deposited res idua l  stresses a r e  so favorable i s  j u s t  a for tunate  coincidence a t  
the  present time. 
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2. Throat 

Circumferential proof s t r e s s e s  i n  the  throa t  a r e  shown i n  Figures 
17 and 18. Axial proof stress i n  t h e  throa t  i s  not shown since it i s  more compres- 
s i v e  than the  res idua l  stress, due t o  the  motor t h r u s t  on t h e  expansion s k i r t  durin, 
f i r i n g .  

D. Operating Stresses  

Operating s t r e s s e s  i n  t h e  motor t h r o a t  and combustion chamber were c a l  
culated f o r  steady s t a t e  motor wal l  temperatures shown i n  Figures 19 and 20. A 
l i n e a r  temperature gradient from t h e  inside t o  outside surface was assumed. 

1. Combust ion Chamber 

Circumferential operating s t r e s s e s  f o r  s t r e s s - f r e e  conditions of 
Motor operation is  the  only 0, 2000 and 4000°F a r e  shown i n  Figures 2 1  and 22. 

loading condition found i n  t h i s  study t o  cause maximum circumferential  s t r e s s e s  i n  
the  i n t e r i o r  of t h e  wall .  The s t r e s s e s  plot ted a r e  t h e  maximum t e n s i l e  s t resses ,  
regardless of where they occur. Axial operating s t r e s s e s  for t h e  assumed s t r e s s -  
f r e e  conditions a r e  much l e s s  than t h e  circumferential  s t r e s s e s  and a r e  not shown. 
It i s  shown i n  Figures 2 1  and 22 t h a t  the operating s t r e s s e s ,  unlike res idua l  and 
proof s t r e s s e s ,  a r e  a function of the  radius as wel l  as  t h e  thickness-radius r a t i o  
as indicated i n  Figure 23 which shows combustion chamber wal l  temperatures f o r  in- 
s i d e  r a d i i  of 1 and 2 inches. 

Axial operating s t r e s s e s  f o r  the as-deposited res idua l  stress d i s -  

The s l i g h t  dependence of the  operating s t r e s s e s  on radius as  
t r i b u t i o n  a r e  of the  same magnitude as  the  circumferential  s t r e s s e s  as shown i n  
Figures 24 and 25. 
w e l l  a s  thickness-radius r a t i o  i s  again shown i n  Figure 26. 

2. Throat 

Circumferential operating s t r e s s e s  a t  t h e  t h r o a t  a r e  shown i n  
Figures 27 and 28. Axial operating stresses, shown i n  Figures 29 and 30, cons is t  01 
s t r e s s e s  due t o  operating temperature and pressure, plus superimposed a x i a l  residua: 
s t r e s s e s ,  which are  considered t o  be those of Condition 3 i n  Figure 29 and Ccnditioi 
4 i n  Figure 30. Condition 4 was defined as being s t r e s s - f r e e  a t  O'F, t h a t  is ,  no 
res idua l  s t r e s s e s .  It is  seen t h a t  if  a OOF s t r e s s - f r e e  condition could be achievec 
t h e  a x i a l  operating s t r e s s e s  would be much l e s s  than f o r  Condition 3 as-deposited 
res idua l  s t r e s s e s .  

E. Combustion Chamber S t ress  Summary 

It i s  evident from t h e  r e s u l t s  presented t h a t  the various possible 
res idua l  s t r e s s  d i s t r ibu t ions  have a pronounced e f f e c t  on the  loading condition 
which produces the  maximum t e n s i l e  s t r e s s .  This r e l a t i o n  i s  b e t t e r  seen by compar- 
ing the summary of important combustion chamber s t r e s s e s  a t  l 5 O  ps ia  f o r  s t ress-free 
material ,  presented i n  Figures 3 l t h r o u g h  33, with the  s t r e s s e s  f o r  as-deposited 
mater ia l ,  presented i n  Figure 34. For 0°F styess-free material ,  the  operat ional  
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stress i s  much grea te r  than t h e  proof s t r e s s .  This r e l a t i o n  changes progressively 
as the  s t r e s s - f r e e  temperature increases,  so t h a t  f o r  4000OF s t r e s s - f r e e  material ,  
t h e  proof s t r e s s  i s  much more important than the  operating stress. For as-depositec 
material ,  the  a x i a l  s t resses ,  which a r e  unimportant f o r  t h e  various s t r e s s - f r e e  as- 
sumptions, become of comparable magnitude a t  some thickness-radius r a t i o s .  Opera- 
t i o n a l  s t r e s s e s  exceed proof s t r e s s e s  i n  as-deposited mater ia l  a t  thickness-radius 
r a t i o s  lesa; than about 0.07, but the  proof s t r e s s  i s  much grea te r  a t  l a r g e r  r a t i o s .  
However, i n  comparing operating and proof s t resses ,  t h e  importance of the assump- 
t i o n s  of constant mater ia l  propert ies  must be considered. A s  w i l l  be shown l a t e r ,  
the  most important e l a s t i c  constants a r e  the modulus of e l a s t i c i t y  i n  the a-direc- 
t i o n  and the thermal expansion coef f ic ien t  i n  t h e  c-direct ion.  For res idua l  and 
proof s t r e s s e s ,  mater ia l  propert ies  a r e  needed only between 0' and 4000°F, and t h e  
assumed average values of the  e l a s t i c  constants a r e  va l id .  
s t resses ,  however, p a r t  of the  wall  is  over 4000°F, and the  modulus of e l a s t i c i t y  
s t a r t s  t o  decrease rapidly a t  t h i s  temperature, which would tend t o  decrease 
s t r e s s e s .  
simultaneous occurrence of growth, which might tend t o  increase s t r e s s e s .  I n  view 
of these fac tors ,  t h e  calculated operating s t r e s s e s  cannot be considered as ac- 
curate  as t h e  res idua l  and proof s t r e s s e s .  

For the operating 

Furthermore, t h e  thermal expansion above 400O0F i s  complicated by the 

The question na tura l ly  a r i s e s  as t o  what res idua l  stress condition 
would be optimum f o r  the combustion chamber t o  best meet a l l  three loading condi- 
t i o n s .  
i n  a l l  cases t o  reduce the s t r e s s  as  much as possible,  it can be seen t h a t  both 
mddxw'ialk with a s t r e s s - f r e e  temperature of 2000°F, and mater ia l  w i t h  as-deposited 
res idua l  s t resses ,  would have an optimum s t r e s s  of 7000 p s i .  Material  s t r e s s - f r e e  
a t  4000°F would have an optimum s t r e s s  of 8100 p s i ,  and mater ia l  s t ress - f ree  a t  O°F 
would have the highest optimum stress of a l l ,  9300 p s i .  Therefore, the  condition 0:  

zero res idua l  s t r e s s e s ,  which one might think would be t h e  ult imate goal, i s  actual .  
l y  t h e  worst of the four res idua l  s t r e s s  conditions considered, a t  l e a s t  f o r  t h e  
combustion chamber. O f  course, the  analysis  has used constant mater ia l  properties,  
and t h e  operating s t r e s s e s  i n  p a r t i c u l a r  a r e  probably conservatively high. But the 
pr inc ip le  conclusion can s t i l l  be drawn t h a t  there  i s  not any unusual advantage t o  
any of t h e  res idua l  s t r e s s  conditions assumed. A hypothetical  res idua l  stress d i s -  
t r i b u t i o n  could possibly be specif ied which might permit lower s t r e s s e s  a t  the  op- 
t i m u m  thickness-radius r a t i o ,  but t h i s  has not ye t  been done. Furthermore, methods 
of achieving any p a r t i c u l a r  res idua l  s t r e s s  condition desired do not present ly  
e x i s t .  

From Figures 31 through 34, and considering optimum thickness-radius ratAos 

F. Throat S t r e s s  Summary 

Important th roa t  s t r e s s e s  a r e  shown f o r  a 0°F s t r e s s - f r e e  condition i n  
Figure 35 and f o r  as-deposited (Condition 3) mater ia l  i n  Figure 36. The operationa: 
stress exceeds the  proof s t r e s s  f o r  0°F s t r e s s - f r e e  material ,  j u s t  as  it does i n  thc 
combustion chamber. For the  as-deposited material ,  proof s t r e s s e s  a r e  grea tes t  a t  
l a rge  thickness-radius r a t i o s ,  and proof o r  res idua l  stresses a r e  c lose t o  t h e  maxi- 
mum (operat ional)  s t r e s s e s  a t  small thickness-radius r a t i o s .  Again, t h e  optimum 
stress for as-deposited mater ia l  would be s l i g h t l y  less than f o r  O°F s t r e s s - f r e e  
material ,  but there  i s  not enough difference t o  make one much preferable  t o  t h e  
other .  
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G. Methods of Analysis 

1. General Solut ion 

The s t r e s s  ana lys i s  r e s u l t s  were obtained from a d i g i t a l  computer 
program f o r  t he  general  so lu t ion  of t h e  s t r e s s e s  i n  t h e  center  of an i n f i n i t e l y  
long cyl inder ,  using cy l ind r i ca l  coordinates r, e, and z .  The c-d i rec t ion  of t h e  
pyrolytic graphi te  i s  p a r a l l e l  t o  t he  r a d i a l  d i r ec t ion  r, and t h e  a-b plane of 
pyrolyt ic  graphi te  i s  concentric with the  cy l ind r i ca l  planes containing t h e  a x i a l  
d i rec t ion  z and the  circumferent ia l  d i r ec t ion  e. Perfec t ly  e l a s t i c  mater ia l  be- 
havior was assumed, with a x i a l l y  symmetric temperature and i n t e r n a l  pressure.  
Axial plane s t r a i n  e x i s t s  i n  such a cyl inder ,  and a l l  shear  s t r e s s e s  and s t r a i n s  
vanish. Pyrolyt ic  graphi te  i s  a t ransverse ly  i so t rop ic  mater ia l  with the  axis  of 
symmetry i n  t h e  c -d i rec t ion .  Therefore, the generalized Hooke’s law can be wr i t t en  
a s  follows: 

T = Temperature increment from some reference s t r e s s - f r e e  s t a t e  

s = E l a s t i c  compliances 

c = E l a s t i c  s t i f f n e s s e s  

i j  

i j  

= Coeff ic ients  of thermal expansion i j  

1 J  3.. = Thermal s t r e s s  coe f f i c i en t s  

= S t r a i n  
‘ij 

CT. = S t r e s s  
i J  

’he system of symbols and subscr ip ts  i s  the  same as  used i n  Reference 1 and i s  ex- 
ilained i n  Reference 5 .  
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The thermal s t r e s s  coef f ic ien ts  > a :  can be wr i t ten  i n  terms of 
A J  the s t i f f n e s s e s  (Reference 5 )  as follows: 

The s t i f f n e s s e s  can be wr i t ten  i n  terms of the  compliances (Reference 

= s /x 51 + c12 33 1 

where 
2 

13 
x1 = s33 (s11 + sl*) - 2 s 

The compliances can be defined i n  terms of the following conven- 
t i o n a l  e l a s t i c  constants (Reference 5 )  : 

1 
11 = 5 S 

1 
s33 = 5 

%2 
s12 = E 

- 2, 13 

1 

13 = El S 

(16) 

For t h i s  problem, the equilibrium equations reduce t o  t h e  follow- 
ing (Reference 6) : 
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The s t r a i n  displacement equations a re  as  follows: 

du 
rr dr. 

E = -  

and 

where u = r a d i a l  displacement. 

By subs t i t u t ing  from the  s t r e s s - s t r a i n  equation, and denoting the  
constant a x i a l  s t r a i n  by C3, we  can get  t he  following d i f f e r e n t i a l  equation: 

The der ivat ion of a comparable equation, using a d i f f e r e n t  ax is  of symmetry, i s  
presented i n  Reference 7. 

If we l e t  
2 c  A = A 

c33 
and l e t  

t h e  so lu t ion  t o  Equation (21) can be wr i t ten  a s  follows: 

u = (c1 + vl) rA + (c2 + v2) r-A 

where C1 and C2 a r e  constants of integrat ion,  and 

v1 = - er d r  
&l 
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A l i n e a r  r a d i a l  temperature gradient of t h e  following form: 

T = a  0 + a l ’  ( 2 7 )  

was assumed, and by combining Equations (23) through (27) an equation f o r  u can be 
obtained. Then, by use of Equations (19) and ( 2 0 ) ,  Equations (4), ( 5 )  and (6)  can 
be wr i t ten  a s  follows: 

Where 

B =  Trr -Le 
“33 

rr c =  - 
c33 

c12 - C I T  

33 
C 

D =  

UNC LASS I F l  ED - 16 - 



If  complete a x i a l  r e s t r a i n t  i s  assumed, C 

pressure rrr a t  t h e  inner  and outer  r a d i i ,  and subs t i t u t ing  i n t o  Equation (30), 
ge t t ing  two equations i n  two unknowns. 

= 0, and only the two constants of i n t e -  
grat ion C1 and C2 must be evaluated, whic ?l can be done by specifying the r a d i a l  

For a f i n i t e  a x i a l  s t r a i n ,  Cz, w i l l  not be zero, and must be ob- 
ta ined from the  boundary condition as  follows< 

JrkZ r d r  = - FZz 

27 /  
'i 

where F,, i s  the  a x i a l  load, which must be s p e c i f d d .  
a f t e r  subs t i t u t ion  f o r  rzz from Equation (29) leads t o  the  following: 

In tegra t ion  of Equa 

A + 1  A + 1  -A+1 -A+1) + H5 (ro2-ri 2 c3 
H1 ( ro  - ri 1 c1 + H2 bo - 'i 

*ZZ 

i 2 n -  
+ H3 (rO3 - ri3) + H4 (ro2 - r = - 

H =  
3 ( 4  - A2) 3 

(34) 

ion (34) 

Equation (35) together  w i t h  Equation (30)  evaluated a t  t h e  inner  and outer  r a d i i  
provide three  equations f o r  determination of the three unknowns Cl, C 
s t r e s s e s  a r e  then evaluated from Equations (28),  (29) ,  and (30). 

and C3' The 
2 
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2. Ef fec t  of Axial Load 

If complete a x i a l  r e s t r a i n t  i s  assumed, t h e  analysis  is simplified 
t o  t h e  solut ion of two equations i n  two unknowns. This method was used i n  the  pre- 
vious work (Reference 1) f o r  hand calculat ion of stresses due t o  a r a d i a l  tempera- 
t u r e  gradient i n  a t h i n  walled pyrolyt ic  graphite cylinder,  assuming t h a t  circum- 
f e r e n t i a l  s t r e s s e s  a r e  not affected by t h e  resu l tan t  a x i a l  load. Although exact 
only f o r  i so t ropic  materials,  it has been shown by use of t h e  d i g i t a l  computer pro- 
gram t h a t  there is  p r a c t i c a l l y  no e f f e c t  of a x i a l  stresses on circumferential  
s t r e s s e s  f o r  t h e  l i n e a r  r a d i a l  temperature gradients considered. There is  a some- 
what greater  e f f e c t  on res idua l  s t r e s s e s ,  as shown i n  Figure 37. Circumferential 
proof s t r e s s e s  on the inside surface of a cyl inder  a r e  shown t o  be indistinguishabl 
f o r  zero end load and an end load which would e x i s t  i n  a combustion’chamber with a 
contraction r a t i o  of 4.0 and an expansion coef f ic ien t  of 1.89. The e f f e c t  of com- 
p l e t e  a x i a l  r e s t r a i n t  i s  negl igible  f o r  small thickness-radius r a t i o s  and gradually 
increases t o  as much as 7% a t  a thickness-radius r a t i o  of 0.2. 

The a x i a l  load e f f e c t  i s  much more important f o r  a x i a l  s t r e s s ,  of 
course, p a r t i c u l a r l y  f o r  t h i n  walls. The following expression can e a s i l y  be de-  
rived f o r  the  a x i a l  load on t h e  c y l i n d r i c a l  portion of a combustion chamber of a, 
free-standing motor f o r  which a l l  t h r u s t  i s  transmitted t o  t h e  i n j e c t o r  head, which 
is t h e  usual s i t u a t i o n  f o r  free-standing motors: 

n 

FZz = PcAc (1 - - LF) 
6, 

Where 

Pc = Chamber pressure 

A, = Chamber cross  sec t iona l  area 

CF = Nozzle expansion c o e f f i c i e n t  

E = Chamber contraction r a t i o  
C 

Equation (41) should be used w i t h  caution f o r  contract ion r a t i o s  near 1.0, i n  which 
case c e r t a i n  simplifying assumptions usual ly  made i n  evaluating the expansion coef- 
f i c  i e n t  a r e  not va l id .  

Axial stress i n  a combustion chamber i s  shown i n  Figure 38 f o r  zer 
end load (Ec = CF), and f o r  an end load due t o  a contrac6ion r a t i o  of 4.0 and an ex 
pansion coef f ic ien t  of 1.89. 
very t h i n  walls by using a zero a x i a l  load. 

A la rge  decrease i n  a x i a l  stress can be achieved i n  

U N CLA S S I F I ED - 18 - 
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3. E l a s t i c  Constants of Pyrolytic Graphite 

The motor s t r e s s e s  were calculated using the  following values of  
t he  e l a s t i c  constants:  

6 2 
lb / in .  

6 2 lb / in .  

El = 4.0 x 10 

E3 = 1.5 x 10 

3,, = -0.15 

q13 = 0.9 
6 

= 14.0 x 10 6 in./in."F 

Nee= 1.0 x 10 in./in.'F 

rr 
The importance of t he  numerical accuracy of eat,- of t h e  e l a s t i c  

constants was investigated by ca lcu la t ing  the res idua l  stress a t  the inside surface 
of a cylinder w i t h  a thickness-radius r a t i o  of 0.08, assuming no end load and a 
4000°F s t r e s s - f r e e  condition. The value of each constant was varied within l i m i t s  
established by compressibil i ty and s t r a i n  energy c r i t e r i a  given i n  Reference 1, 
keeping a l l  o ther  constants a t  the  nominal values l i s t e d  above. 

a. Modulus of  E l a s t i c i t y  i n  c-Direction 

The c-direct ion modulus was found t o  be unimportant, as shcwn 
be low : 

E 3 wse 
0.5 8367 

1.0 8384 

1 9  5 8389 (nominal value) 

2.5 8396 

b. Modulus of E l a s t i c i t y  i n  a-b Plane 

The modulus i n  t h e  deposit ion plane i s  of dominant importance, 
as would be expected. 

0- 
8.8. 

2.5 5246 

4.0 8389 (nominal value) 

5*0 10 , 483 
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C .  Poisson's Ratio i n  a-b Plane 

The absolute magnitude of Poisson's r a t i o  i n  t h e  deposit ion 
plane can be important i n  es tab l i sh ing  res idua l  s t r e s s e s .  

12 2) 

-0.5 10 9 923 
-0.15 8389 (nominal value) 

0.2 8545 

d.  Poisson's Ratio i n  a-c Plane 

The r a t i o  of contraction i n  t h e  c-direct ion t o  elongation i n  
the  loaded a-direct ion i s  not important, as  shown by t h e  following r e s u l t s :  

13 %e 
0-5 8390 
0 -7 8390 
0 09 8390 (nominal value) 

e .  Coefficient of Thermal Expansion i n  a-b Plane 

Quite large percentage changes i n  t h e  coef f ic ien t  of thermal 
expansion i n  the  a-b plane a r e  possible  with only moderate e f f e c t  on the res idua l  
stress: 

OCS& 
0.5 x 10- 8712 

1.0 x loe6 
2.0 x 10- 7744 
4.0 x loe6 6453 
Coefficient of Thermal Expansion i n  c-Direction 

8389 (nominal value) 

f .  

The coef f ic ien t  of thermal expansion i n  the  c-direct ion has a 
s t rong e f f e c t  on the res idua l  s t r e s s .  

Krr 5 3 -  
3872 6 

6 
7 x 10- 

10 x 10- 

14 x 8389 (nominal value) 

l a  10,971 
21  x 10-6 12 9 907 

5808 
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Circumferential Pressure 
S t ress ,  

Inside Outside 
t Pri 

’i 
- 

( P s i )  ( P s i )  ( P s i )  

4. Simplified Equations 

rw, Inside 
PriJt 

Some of t h e  stresses i n  pyrolyt ic  graphite can be calculated w i t h  
good accuracy by t h e  use of severa l  simple equations given below. 

0.05 
0.10 

0.15 
0.20 

a. 

3000 3093 29 12 1.031 
1500 1598 1412 1.065 
1000 1103 9 12 1.103 
750 858 663 1.144 

Pressure Stresses  

Circumferential stress i n  a t h i n  pyrolyt ic  graphite cyl inder  
with 150 psig i n t e r n a l  pressure and zero a x i a l  load was calculated f o r  a range of 
thickness-radius r a t i o s .  The r e s u l t s  a r e  tabulated below: 

A good approximation of the pressure s t r e s s e s  i n  t h i n  pyrolyt i  
graphite cylinders can be made by use of t h e  following simple hoop tension equation 

Pr . 
0- =i 
- t  

b. Residual Stresses  

A simple equation f o r  c i rcumferent ia l  res idua l  stresses i s  
given i n  ( 2 ) .  

This  equation gives good cor re la t ion  w i t h  t h e  anisotropic  
t e n s i l e  s t r e s s e s  on t h e  inside surface and compressive stresses on t h e  outer  s u r -  
face,  but  cannot be used f o r  r ad ia l  temperature gradients.  The r e l a t i v e  importance 
of the  various e l a s t i c  constants as  previously discussed i s  consis tent  w i t h  Equa- 
t i o n  (43). 
i n  Reference 8. 

Another method of ca lcu la t ing  res idua l  and thermal stress i s  presented 
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H. Effective Strength of Pyrolytic Graphite 

The t e n s i l e  s t rength of pyrolytic graphite i n  the  a-direction, based 
on t e n s i l e  tests of f l a t  specimens, i s  shown i n  Figure 39. Strength a t  room 
temperature of w e l l  over 10,000 p s i  i s  indicated,  based on t h e  applied load and the 
cross-sect ional  area.  

Strength of pyrolyt ic  graphite tubes, on the  other  hand, has generally 

If t h e  estimated res idua l  s t r e s s  i n  as-deposited cylinders 
indicated f a i l u r e  under circumferential  pressure stress, i n  the a-direction, of 
about 2000 t o  4000 p s i .  
i s  added t o  t h e  pressure s t r e s s ,  a t o t a l  s t r e s s  a t  f a i l u r e  of 6000 t o  8000 p s i  i s  
indicated.  
p s i  be used when estimating the  s t r u c t u r a l  capabi l i ty  of free-standing motors. 
i s  probable t h a t  the  s t rength of pyrolyt ic  graphite tubes increases with tempera- 
t u r e  i n  the  same way as t h e  s t rength of f l a t  samples shown i n  Figure 39, but t h i s  
has not been proven. 
operate qui te  successful ly  a t  chamber pressures which frequently cause f a i l u r e  dur- 
ing proof tests a t  room temperature. This can probably be a t t r i b u t e d  t o  e i t h e r  the 
increase of s t rength  a t  elevated temperature, or the  f a c t  t h a t  proof s t r e s s e s  usual 
l y  exceed the  operation s t resses ,  which i s  generally shown by t h e  s t r e s s  analysis. 

It i s  recommended t h a t  a t e n s i l e  s t rength i n  the  a-direct ion of 8000 
It 

However, it has been observed t h a t  free-standing motors 

Compressive s t rength i n  t h e  a-direct ion i s  not w e l l  established, but 
experience indicates  t h a t  it i s  probably greater  than t e n s i l e  strength,  since most 
f a i l u r e s  a r e  t e n s i l e ,  and it i s  known t h a t  compressive s t r e s s e s  of comparable mag- 
nitude of ten  e x i s t  on t h e  opposite face of a cylinder.  
compressive s t r e s s e s  have been presented from the  stress analysis .  

Because of t h i s ,  very f e w  

Tensile s t rength i n  t h e  c-direct ion i s  about 300 p s i  a t  room tempera- 
However, the  operating t u r e  and drops t o  very low values a t  elevated temperature. 

r a d i a l  s t r e s s e s  a r e  compressive and compressive s t rength i n  t h e  c-direct ion i s  very 
high) so t h a t  t h e  most c r i t i c a l  r a d i a l  s t r e s s e s  a r e  res idua l  s t resses .  

I. Discussion of  Stress Analysis 

Free-standing pyrolyt ic  graphite motors have been shown t o  be marginal 
f o r  operation a t  chamber pressures up t o  150 psia ,  based on a s t rength  of 8000 p s i  
f o r  cylinders,  and a combustion temperature near 5000°F. However, t h e  range of per 
missible thickness-radius r a t i o s  i s  r a t h e r  small f o r  t h i s  strength,  and could be 
increased considerably by a s t rength  of 10,000 or 12,000 p s i .  
s t rength  t o  t h i s  amount might w e l l  be possible,  s ince f l a t  pyrolyt ic  gra2hite i s  
t h i s  s t rong or stronger.  

An increase of 

It was found t h a t  o v e r a l l  capabi l i ty  of the mater ia l  was not grea t ly  
d i f f e r e n t  f o r  any of four widely d i f f e r e n t  res idua l  stress conditions; i n  fac t ,  
the  type of res idua l  s t r e s s  commonly encountered (as-deposited mater ia l )  i s  some- 
what more favorable than various idealized res idua l  stress states. This i s  due t o  
t h e  anisotropic nature of pyrolytic graphite, and it has not been found possible t o  
reduce the  extent of t h i s  anisotropy up t o  the  present time. 
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The most e f f ec t ive  way t o  reduce t h e  anisotropy would be by reducing 
t h e  coe f f i c i en t  of thermal expansion i n  t h e  c-direct ion.  

An increase i n  thermal conductivity i n  t h e  c-direct ion would a l so  be 
bene f i c i a l  s ince lower ins ide  wal l  temperatures would r e s u l t ,  with a reduction i n  
oxidation r a t e .  Operating s t r e s s e s  would a l so  be reduced i n  many cases.  The low 
c-direct ion conductivity i s  one of t he  great advantages of pyrolyt ic  graphi te  f o r  
many appl icat ions,  but  is  not advantageous f o r  a free-standing motor. 

It should be noted t h a t  t he  motor s t r e s ses  a r e  dependent mostly on the  
r a t i o  of wal l  thickness t o  ins ide  radius .  This means t h a t  la rge  and small  motors 
a r e  equally feas ib le ;  i n  f a c t ,  t h e  l a rge r  t he  motor s i z e  t h e  th icker  t he  wal l  could 
be made, s o  t h a t  a f i n i t e  erosion r a t e  would have less r e l a t i v e  e f f e c t  on l a rge r  
motors. 

Free-standing pyrolyt ic  graphi te  motors may wel l  be f eas ib l e  f o r  ad- 
vanced l iqu id  propel lant  systems which have flame temperatures near 6 0 0 0 " ~ .  
f a c t ,  some of these  systems, such as  F2/H2, would probably erode t h e  pyro ly t ic  
graphi te  less than the  hypergolic systems which produce water vapor. Although 
operating s t r e s s e s  would be expected t o  increase w i t h  combustion temperatures, a 
meaningful evaluation of s t r e s s e s  a t  these high temperatures would necess i ta te  i n -  
c lusion of t h e  temperature dependency of mater ia l  e l a s t i c  propert ies  i n  the  ana1Lysi.i 
Growth r a t e s  would be so grea t  near 6 0 0 0 " ~  t h a t  growth s t r e s s e s  during motor f i r i n g  
would a l so  have t o  be included i n  the  s t r e s s  ana lys i s .  The l imi ta t ions  on s t ruc-  
t u r a l  capab i l i t y  r e su l t i ng  from t h e  combination of growth a t  6 0 0 0 " ~  and t h e  low 
e l a s t i c  modulus a t  6 0 0 0 " ~  are  not immediately apparent. I n  f a c t ,  growth data  from 
Reference 9 show t h a t  growth r a t e  increases rap id ly  a t  temperatures of about 4300°F 
and becomes enough t o  a f f ec t  motor s t r e s ses  of t he  present analysis  within severa l  
minutes. Referring t o  Figure 23, it can be seen t h a t  growth could begin t o  a f f e c t  
t h e  present ana lys i s  f o r  thickness-radius r a t i o s  above 0.06. 

I n  
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IV. RESIDUAL STRESS TEST PROGRAM 

A program of annealing and t e s t i n g  of pyrolyt ic  graphite cylinders 
was conducted t o  determine the e f f e c t  of annealing on t h e  res idua l  s t r e s s e s  and 
s t rength of t h e  cyl inders .  Previous annealing done by the major manufacturers of 
pyrolytic graphite was l imited almost exclusively t o  anneal temperatures above 
4000°F. It has been shown both experimentally (Figures 4 and 5) and t h e o r e t i c a l l y  
(Section 111) t h a t  growth which occurs above 4000°F a f t e r  deposit ion increases tihe 
circumferential  res idua l  stress on the inside surface of cylinders,  which is usual1 
t h e  c r i t i c a l  res idua l  stress. This e f f e c t  explains t h e  r e s u l t s  reported i n  Refer- 
ence 10, which show a reduction of rupture s t rength of cylinders annealed above 
4000°F. 
t u r e s  i n  t h e  range of 2000" t o  3000°F. 

Therefore, it appeared more promising t o  anneal a t  intermediate tempera- 

Twenty-six tubes were manufactured by High Temperature Materials, 1:nc. 
w i t h  i d e n t i c a l  deposit ion conditions and mandrel design. 
long, taken from the  center  of an 8 inch long tube. 
inches, t h e  w a l l  thickness 0.060 inch + 0.000 - 0.005. 
the  mandrel s i d e  t o  a depth of 0.003 t o  0.005 inch. 
meet thickness tolerances was done on t h e  inside surface.  The amount of machining 
done on each tube can be judged from t h e  w a l l  thickness as  deposited, l i s t e d  i n  
Table I. Six  tubes were tes ted  by High Temperature Materials, Inc.  without anneal- 
ing, and twenty tubes were annealed by Marquardt before being returned t o  HTM f o r  
t e s t i n g .  The tubes were annealed i n  pa i r s ,  so t h a t  one tube could be used t o  de- 
termine t h e  e f f e c t  on s t rength,  and the other  t h e  e f f e c t  on r e s i d u a l  s t r e s s e s .  

Each tube was 4 inches 
The i n t e r n a l  diameter was 2 

Each tube was machined on 
Any addi t ional  machining t o  

The following three  annealing f a c i l i t e s  were used: 

1. The Marshall furnace zirconia tubes e l e c t r i c a l l y  heated 

2. The Curtiss-Wright furnace w i t h  graphite tubes heated by 
graphite res is tance elements 

3. Radiant heater tubes placed i n  ax ia l  symmetry inside the 
pyrolyt ic  graphite tubes 

All three f a c i l i t i e s  were purged with helium or argon. 
curred i n  the Curtiss-Wright furnace. However, small amounts of oxidation of 
pyrolyt ic  graphite occurred i n  t h e  Marshall furnace and the  i n t e r n a l  radiant  heater 

Negligible oxidation oc- 

The anneal h i s t o r y  f o r  each tube i s  given i n  Table 11. The rad ian t  
heater f a c i l i t y  was automatically controlled so t h a t  the  ins ide  surface temperature 
rose t o  2000°F a t  the r a t e  of 2000°F per minute, af ter  which the  inner  surface was 
maintained a t  2000°F f o r  2 minutes, followed by cool down. It took 2 or 3 minutks 
t o  cool down before t h e  next cycle.  
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A. Pressure Rupture Test Results 

The r e s u l t s  of pressure rupture tests a re  given i n  Table 111. A l -  
though some var ia t ion  e x i s t s  among tubes w i t h  the  same heat treatment, some trends 
a r e  obvious. F i r s t ,  three of four as-deposited tubes ruptured a t  a low pressure, 
lower i n  f a c t ,  than had been expected, based on previous experience with somewhat 
gfmilar pyrolyt ic  graphite par t s .  Second, there  i s  a consis tent  improvement i n  
s t rength with increasing number of cycles of i n t e r n a l  rad ian t  heating. Annealing 
a t  25OO'F a l so  i s  e f f e c t i v e  i n  increasing s t rength.  
d i f f i c u l t  t o  Onterpret; seven hours was apparently b e n e f i c i a l  while 25 hours was 
inef fec t ive .  There i s  some p o s s i b i l i t y  t h a t  growth occurred during the  t e s t s  a t  
32OO'F a t  a very slow r a t e ,  but enough t o  counteract t h e  e f f e c t  of strengthening 
f o r  the  longer t e s t .  The temperature a t  which growth begins, i f  indeed there  i s  
such a threshold, is  not known. The lowest temperature f o r  which growth data i E j  

avai lable  i s  3450'F (Reference 9 ) .  
i n  the  c-direct ion was reported for 1 hour anneal. 

The e f f e c t  of 3200'F anneal i E  

Growth of 0.09 i n  the  a-direct ion and 0-3% 

A s  discussed e a r l i e r ,  it i s  thought t h a t  growth tends t o  increase the 
circumferential  tension on the ins ide  surface,  reducing the pressurizat ion strengtk 
However, one tes t  was performed a t  temperatures above 4000'F t o  get comparative 
data .  The rupture pressure of a tube (No. 15) cycled seven times i n  a 7 hour 
period between 2500' and 4500'F was one of t h e  lowest of the heat t rea ted  tubes a l -  
though higher than three  out of four of the as-deposited tubes. 
(No. 16) f a i l e d  when bumped s l i g h t l y  a f t e r  anneal, w i t h  a s t r a i g h t  longi tudinal  
crack indicat ing tension on t h e  inside surface.  

The second tube 

B. Residual S t r e s s  Results 

Results of t h e  res idua l  @tress t e s t s  are s b w n  in!Ta;ble (XY. ' The 
s t r e s s e s  were calculated by H i g h  Temperature Materials, Inc. from s t r a i n s  recorded 
by r o s e t t e  s t r a i n  gages. Two gages were attached on t h e  inside and outs ide surface 
0.5 inch f r o m  one end, and t w o  w e r e  attached i n  the  center  of the tube. The speci- 
mens were cut  w i t h  a hand saw t o  as  small a square area containing the gages as  was 
convenient. It was assumed t h a t  a l l  res idua l  s t r a i n s  were then rel ieved,  so  t h a t  
t h e  indicated s t r a i n s  were the  negative of t h e  res idua l  s t r a i n s .  The res idua l  
s t r e s s e s  were then calculated by the following equations (given by High Temperature 
Materials,  Inc . ) : 

E- 

E- 

LC 
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The circumferent ia l  s t r e s ses  a re  approximately equal, of opposite sign, on t h e  in-  
s i d e  and outs ide surfaces .  The a x i a l  s t r e s ses  a r e  l a rge r  i n  tension on the outs ide 
surface than the  compressive s t r e s ses  on the ins ide  surface.  This i s  customary and 
sometimes i s  a t t r i bu ted  t o  the  e f f ec t  of growth and mandrel r e s t r a i n t .  It i s  a l so  
t o  be noted t h a t  the  a x i a l  s t r e s s e s  decrease near t h e  free end, which may be due t o  
the f a c t  t h a t  a l l  a x i a l  s t r e s s e s  become zero a t  the  end. 

The pr inc ip le  conclusion drawn from t h e  r e s idua l  s t r e s s  t e s t  result ,s  
i s  t h a t  there  i s  no evidence of a la rge  change i n  the r e s idua l  s t r e s s e s  f o r  any of 
the  anneal cycles.  The circumferent ia l  s t r e s s e s  a r e  of the most i n t e r e s t  s ince the  
ruptured tubes were not loaded ax ia l ly ,  and probably the  rupture f a i l u r e s  occurred 
i n  tension a t  the ins ide  surface.  From the center  s t a t i o n  circumferent ia l  s t r e s s e s  
on t h e  ins ide  surface (shown i n  Table IV) it i s  possible  t o  see a p a r t i a l  cor re la -  
t i o n  between t h e  r e s idua l  s t r e s s e s  and rupture pressure of tubes exposed t o  the  
same heat t reatment .  Although the inner  t e n s i l e  s t r e s s  i n  the two as-deposited 
tubes was higher than a l l  but  one of the heat t r ea t ed  tubes, t h a t  one tube (No. 22) 
was heat t r ea t ed  the  same as  Tube 21, which recorded a very high rupture stress. 
On t h e  other  hand, there  i s  a consis tent  trend between decreasing r e s idua l  s t r e s s  
i n  Tubes 4, 2, and 6, and the corresponding increased s t rength  of t h e i r  companion 
tubes,  Numbers 3 ,  1, and 5 .  However, the  decrease i n  indicated r e s idua l  s t r e s s  i s  
l e s s  than t h e  increase i n  hoop s t rength  i n  corresponding tubes. That is, the  
r e s idua l  s t r e s s  decreases from 3360 t o  2880 i n  Tubes 4 and 6, while t he  hdop I 

s t rength  increases from 2720 t o  3770 i n  the  corresponding ruptured tubes.  This 
suggests t h a t  the s t rength  of t he  tubes might be control led by local ized s t r e s s  
concentrations which a re  not f u l l y  indicated by s t r a i n  gage measurements, but which 
a r e  being released by the heat treatment.  
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V. PYROLYTIC MATERIALS TESTING 

A. Plasma Torch Oxidation Tests 

Oxidation of pyrolytic materials by water vapor was investigated using 
the  plasma torch with secondary mixing chamber described i n  Reference 1. Argon and 
about 7% hydrogen were heated i n  the  plasma arc,  and hydrogen and oxygen were added 
i n  the  secondary mixing chamber t o  provide a stoichiometric mixture, with t h e  e f -  
f luent  containing 3 6  of water vapor by weight. A l l  samples were placed 1.5 inches 
from the  e x i t  of t h e  secondary mixing chamber. 

Previous experience indicates  t h a t  the oxidation r a t e  of pyrolyt ic  
graphite samples heated t o  between 3000' and 4000'F by t h i s  plasma torch  a re  much 
higher than a t  t h e  t h r o a t  of a free-standing motor operating a t  100 psia  with 
N Ok/0.4 N2H -0.5 UDMH. 

water vapor, which i s  t h e  pr inc ip le  oxidizing agent i n  many combustion gases. 
r e s u l t s  f o r  eleven pyrolyt ic  materials a r e  given i n  Table V. 

However, t h e  plasma tests a re  considered valuable as  an 
i?idication o 4; the  r e l a t i v e  oxidation rates of various materials when exposed t o  

The 

Boron n i t r i d e  near 3900'F had a much smaller erosion r a t e  than pyro- 
l y t i c  graphite,  which i s  consis tent  with t h e  r e s u l t s  of e a r l i e r  t e s t i n g .  Additions 
of Mo and Zr t o  BN lessened i t s  oxidation resis tance.  

The t i tanium carbide sample appeared melted f a r  below i t s  expected 
melting temperature, which may have been due t o  melting of i t s  oxides. An a l l o y  of 
tungsten i n  pyrolyt ic  graphite eroded much more than pyrolyt ic  graphite, confirming 
s imi la r  r e s u l t s  reported i n  Reference 1. 

Thin coatings of hafnium carbide and zirconium carbide on ATJ graphite 
rapidly oxidieed, but t h e  oxidized coating showed very good adherence t o  the  graph- 
i t e ,  although ul t imately a f a i l u r e  would occur. The adherence of t h e  hafnium oxide 
seemed t o  be s o m e w h a t  be t te r  than t h a t  of the  zirconium oxide. The coatings on 
these samples were found t o  be about 0,001 inch t h i c k  r a t h e r  than 0.010 inch as 
ordered. The adherence of t h e  thinner  coating t o  the  graphite i s  probably superior 

The average erosion r a t e  of the  a l l o y  of 20$ by weight of zirconium 
carbide i n  pyrolytic graphite was about one-fourth of t h a t  of pyrolyt ic  graphite, 
due t o  t h e  re ta rda t ion  of oxidation caused by the  presence of the  zirconium oxide. 
The oxide momentarily adheres t o  the  surface, then i s  removed by the  shear forces  
of the gas flow and is  immediately replaced by a new oxide layer  from t h e  rapidly 
oxidized zirconium carbide. Whether t h e  oxide would adhere long enough t o  be 
benef ic ia l  under t h e  shear forces i n  a motor th roa t  i s  not known. 
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B. Acetylene Torch Oxidation Tests 

Several  pyrolyt ic  mater ia ls  were tes ted  i n  an oxygen acetylene flame. 
The r e s u l t s  a r e  shown' i n  'Table'+ Y€ . 

Most of t he  weight l o s s  of the  graphite samples coated with HFC and 
Z r C  was due t o  oxidat ion of t h e  graphi te  a f t e r  coating f a i l u r e .  

The magnesium oxide sample had the  g rea t e s t  oxidation res i s tance  of 
any mater ia l  ye t  t es ted ,  w i t h  almost negl ig ib le  change a f t e r  a 15 minute t e s t  a t  
3900°F (uncorrected).  The sample tested ac tua l ly  consisted of a c l u s t e r  of con- 
t iguous c r y s t a l s .  The boundary planes between c rys t a l s ,  although evident before 
t h e  test ,  d i d  not appear t o  separate  o r  crack during o r  a f t e r  t h e  t e s t .  

C .  Compatibility Tests 

Five minute immersion t e s t s  were made t o  determine the  compatibi l i ty  
a t  room temperature of N2O4, g@ hydrogen peroxide, monomethyl hydrazine and >C$ 
hydrazine-?@ UDMH with t h e  following mater ia ls  : 

1. Pyrolyt ic  graphite 

2. Tungsten - pyrolyt ic  graphite a l loy  

3 .  Boron - pyroly t ic  graphi te  a l loy  

4.  Boron n i t r i d e  

5 .  Titanium carbide 

6 .  2@ zirconium carbide - pyroly t ic  graphite a l loy  

7. Tantalum carbide coat ing on pyrolyt ic  graphite 

8. Hafnium carbide coating on graphi te  

9.  Zirconium carbide coat ing on graphite 

10. S i l icon  carbide 

11. Boron n i t r i d e  - molybdenum a l loy  

12. Boron n i t r i d e  - zirconium a l l o y  

No react ions o r  weight changes of t he  mater ia ls  were detected.  
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VI. MOTOR FIRING TESTS 

A number of motors made i n  par t  or wholly of pyrolyt ic  materials irere 
tes ted,  using N2O4 with e i t h e r  monomethyl hydrazine or a 30-30 mixture of hydrazine 
and UDMH. 
of motor and a summary of t e s t  r e s u l t s  follows: 

Detailed t e s t  data a r e  given i n  Table V I I .  A descr ipt ion of each type 

A .  Composite Pyrolytic Graphite Motor 

The composite motor consisted of a pyrolyt ic  graphite combustion 
chamber l i n e r  and an edge oriented pyrolyt ic  graphite th roa t ,  surrounded by a 
graphite case within a s t e e l  s h e l l ,  as  shown i n  Figure 40. Two composite chambers 
were made. Chamber No. 1 was tested f o r  three runs ( 5 ,  6, and 7) of approximately 
30 seconds each, separated by severa l  minutes of f  time. Run No. 8, intended f o r  
longer duration, was terminated due t o  a pin hole f a i l u r e  through the  s t e e l  case 
near the  junction of the edge oriented t h r o a t  and t h e  chamber l i n e r .  Otherwise, 
very l i t t l e  erosion was evident on the  l i n e r  and throat ,  with an unusually low 
average t h r o a t  erosion r a t e  of 0.01 mil/sec. 
due i n  p a r t  t o  the  f a c t  t h a t  steady s t a t e  temperatures were not reached i n  the edge 
oriented pyrolyt ic  graphite,  which has a high r a d i a l  thermal conductivity.  

The low erosion r a t e  was no doubt 

The l i n e r  and t h r o a t  of composite chamber No. 1 were used t o  make 
another composite assembly which was a l so  used t o  t e s t  an annular i n s e r t  of graph- 
i t e  coated with a pyrolyt ic  coating developed by Marquardt and discussed i n  Sectior 
V I 1 1  of t h i s  report .  The annular i n s e r t  f i t  snugly within t h e  chamber l i n e r  as 
shown i n  Figure 40. However, the  i n s e r t  expanded during f i r i n g  more than the pyro- 
l y t i c  graphite l i n e r ,  causing a crack i n  t h e  l i n e r  and burnout during run No. 16, 
which consisted of two 30-second f i r i n g s  plus a t h i r d  f i r i n g  of 19 seconds. 
pyrolyt ic  RM-005 coating d i d  not appear t o  be affected by the  combustion gases or 
t h e  thermal expansion. 
graphite th roa t  during run 16 was 0.0366 mil/sec, about th ree  times greater  than 
measured on t h e  same t h r o a t  i n s e r t  during runs 5 through 8. 

The 

The t h r o a t  erosion rate on t h e  edge oriented pyrolyt ic  

Composite chamber N o .  2 was also t es ted  w i t h  an annular i n s e r t  i n  the 
combustion chamber, and although t h e  i n s e r t  O.D. had been reduced t o  provide c l e a r -  
ance within the l i n e r ,  t h e  l i n e r  again f a i l e d  because of thermal expansion of the  
i n s e r t .  Throat erosion on the  throa t  i n s e r t  of chamber No. 2 was abbut t h e  same as 
f o r  the f i r s t  runs on chamber No. 2. Again, RM-005 coating on the combustion cham- 
ber  i n s e r t  d i d  not appear t o  be affected.  
pos i te  motor t e s t s  ranged between 93 and 97%. 

Combustion e f f ic iency  during t h e  com- 

B. Free-Standing Boron Nitr ide Throat 

Two motors composed of a pyrolyt ic  boron n i t r i d e  t h r o a t  l i n e r  sal.vaged 
from free-standing motors, within a reinforced phenolic chamber and throa t ,  were 
t e s t e d  i n  30 second runs separated by o f f  times which varied from run t o  run. 

Chamber No. 1 was tes ted  f o r  four 30 second runs ( 9  t o  12) plus one 

Combustion e f f ic iency  was 94 t o  98$ 
20 second run (13). 
t h r o a t  erosion r a t e  was about 0.47 mil/sec. 
f o r  these t e s t s .  

I ts  appearance a f t e r  the  tests i s  shown i n  Figure 41. The 

Chamber No. 2 had a very t h i n  throa t  i n s e r t ,  and no erosion data were 
obtained due t o  rapid f a i l u r e .  
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C. Edge Oriented Boron N i t r i d e  Throat 

Two motors made of reinforced phenolic with edge oriented pyrolyt ic  
boron n i t r i d e  throa ts  were t e s t e d .  
sec over a t o t a l  t e s t i n g  time of 122 seconds. The second motor was t e s t e d  f o r  10 
runs of 30 seconds each, a f t e r  which the  throa t  was almost completely destroyed 
(Figure 42) 
were obtained. 

The throa t  erosion of one motor was 0.19 m i l s /  

Combustion e f f ic iency  was about 9%. No precise  erosion r a t e  data 

The motor f i r i n g  t e s t s  show tha t  t h e  oxidation or erosion r a t e  of 
pyrolyt ic  boron n i t r i d e  i s  much grea te r  than t h a t  of pyrolyt ic  graphite i n  t h i s  
type of combustion gas. 

I). Tapered Pyrolyt ic  Graphite Motors 

A tapered free-standing pyrolytic graphite motor was designed t o  mini- 
mize res idua l  stresses which had caused i n t e r n a l  wal l  delaminations a t  the t h r o a t  
and near the  i n j e c t o r  flange of the  100-pound t h r u s t  motor teste(Lprevious1p (Refer 
ence 1.) Development of a l i g h t  weight attachment between t h e  motor and i n j e c t o r  
was a l s o  desirable .  The design consis ts  of a conical  combustion chamber, a conical 
expansion s k i r t ,  and a la rge  radius of  curvature i n  t h e  throa t  region. The a x i a l  
res idua l  stress a t  the t h r o a t  of such a motor would approach t h a t  of Condition 1, 
shown i n  Figure 8, as the  radius of curvature increases.  

Four sea l e v e l  motors (€e = 1.38) and one a l t i t u d e  motor (6, = 40) 
were purchased from Berylco. 
30" and l!jo, respectively.  
diameter of 0.860 inch, and wal l  thicknesses of 0.040 t o  0.050 inch were specif ied.  
The contraction r a t i o  a t  the i n j e c t o r  face was 4.1 and L* was 8.3 inches. 
l e v e l  motor i s  shown attached t o  the i n j e c t o r  i n  Figure 43 and disassembled i n  
Figure 44, All four motors 
were X-rayed; no delaminations were found. The wal l  thickness a t  the  t h r o a t  of the 
a l t i t u d e  motor was 0.042 inch. 

The chamber and s k i r t  conical  half  angles were 7", 
A th roa t  radius of curvature of 3 inches, a t h r o a t  

A sea 

The disassembled a l t i t u d e  motor i s  shown i n  Figure 45. 

The four sea level  m o t o r s  were proof tested w i t h  w a t e r  w h i l e  attached 
t o  a dummy i n j e c t o r  head and sealed a t  the  t h r o a t .  
a t h i r d  a t  150 ps ig  and the four th  f a i l e d  a t  90 psig.  
l o c a l  high stress region which might have been caused by misalignment of the  mcltor 
during assembly of t h e  motor and i n j e c t o r .  

Two were checked a t  100 psig, 
The f a i l u r e  indicated a 

The dry injector-motor s e a l  was s a t i s f a c t o r y  i n  the  proof t e s t s ;  one 
or two drops of water leaked a f t e r  5 t o  8 minutes a t  proof pressures.  The injector  
motor s e a l  i s  formed by sea t ing  the conical  chamber on a conical  shoulder of the i n  
j e c t o r  as shown i n  Figure 460 A l a rge  compressive s t r e s s  between the  inner chamber 
surface and the tapered shoulder i s  maintained by eight  spr ing loaded b o l t s  ac t ing  
on a s p l i t  s t e e l  r ing  through a continuous outer  r i n g  as shown i n  Figure 46. 

The in jec tor  head assembly b u i l t  f o r  t h i s  motor, including valves, was 
pressure flow checked. The spray pa t te rn  indicated t h a t  a l l  f u e l  flow stream tubes 
were biased t o  the  r i g h t  of the center l ine,  giving a s p i r a l  e f f e c t  a t  impingement. 
Oxidizer flows were normal. 
about 1.6,; as  the O/F was increased toward 2 * 0  t h e  pa t te rn  became even more unsat is  
factory.  

The bes t  flow pa t te rn  was an oxidizer / fuel  r a t i o  of 
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Attempts t o  adequately t e s t  a sea l e v e l  motor using N2O4/O.? N2H4-0.3 
UDMH a t  an O/F of 1.6, were unsuccessful due t o  low ef f ic iency  combustion of about 
7%. 
barely became hot.  No erosion of the motor occurred, and the motor i n j e c t o r  s e a l  
was sa t i s fac tory .  No f u r t h e r  motor t e s t s  a r e  planned u n t i l  combustion e f f ic iency  
i s  improved. 

Burning runs of 3.4, 9.9, 30.5, and 30.6 seconds were made, but the  motor 

Par t  of t h e  reason f o r  the  low ef f ic iency  may be due $0 the  short  L*; 
however, good ef f ic iency  has been obtained from other  100-pound t h r u s t  motors using 
an L* of 8 inches. It is  possible t h a t  the conical  combustion chamber w i l l  require  
a grea te r  L*, but more probably t h e  poor performance was caused by t h e  bad f u e l  
spray pa t te rn .  

Although a low combustion e f f ic iency  during t h e  tapered motor t e s t s  
prevented a complete evaluation of t h e  design, some important r e s u l t s  have been ob- 
ta ined from the  tapered motor program, as  follows: 

1. A complete t h r u s t  chamber w i t h  a 40:l expansion s k i r t  was fabrica-  
ted  from pyrolyt ic  graphite f o r  t h e  f irst  t i m e .  

2. The one motor which was f i r e d  d i d  not f a i l  although exposed t o  
some sharp chamber pressure f luc tua t ions  due t o  rough combustion. 

3. The l i g h t  weight conical  attachment between in jec tor  and motor 
was found t o  provide a s a t i s f a c t o r y  pressure s e a l .  A somewhat 
more severe seal ing problem w i l l  be encountered when t h e  chamber 
wal l  temperatures reach t h e i r  maximum values with good combustion 
eff ic iency,  but t h e  r e s u l t s  so f a r  a r e  encouraging. 

4. No delaminations were found i n  any of the four  tapered motors, 
even though t h e  thickness-radius r a t i o  a t  the  t h r o a t  was about 
0.10. 
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VII. BRAZING STUDIES 

An inves t iga t ion  was made of the  f e a s i b i l i t y  of brazing t h e  a-b plane 
of pyrolyt ic  graphite t o  Type 321 s t a i n l e s s  steel. 
braze al loys were evaluated t o  determine t h e i r  a b i l i t y  t o  w e t  and bond t o  pyrolyt ic  
graphite.  
CM-50, CM-53, CM-60, CM-62, AGC-1, AGC-7, Ag-Mn, and Au-Ni. 

Twelve difference commercial. 

These a l loys  were LM Nicrobraz, Standard Nicrobraz, 5-81-00, 5-8300, 

Four of t h e  above brazes wetted and bonded t o  pyro ly t ic  graphite more 
r ead i ly  than t h e  o thers .  However, whei 
these  a l loys  were used t o  a t t ach  pyrolyt ic  graphi te  t o  Type 321 s t a i n l e s s  s t e e l ,  tht 
j o i n t s  fai:led on cooling by delamination of the  pyrolyt ic  graphi te .  
braze was apparently achieved between t h e  Type 321 SS and t h e  surface of t he  pyr'o- 
l y t i c  graphi te ,  but d i f f e r e n t i a l  contract ion on cooling caused a delamination f a i l -  
ure  beneath t h e  surface of t he  pyrolyt ic  graphite' .  

They were: Ag-Mn, CM-62, AGC-7, and J-8300. 

A successful  

A mechanical tes t  bar  was designed with a s l o t t e d  channel i n  one end 
I n  t h i s  way, t h e  shear s t r e s s  ac t ing  on f o r  i n se r t ion  of t he  pyro ly t ic  graphi te .  

t h e  braze j o i n t  would be symmetrical on both s ides  of t he  pyrolyt ic  graphite.  The 
j o i n t  was brazed with J-8300 a l loy  at2L45°@'for 20 minutes i n  an argon atmosphere. 
A 5-8300 braze f i l l e r  was obtained from General E l e c t r i c  Company. I t s  composition 
i s  61% N i ,  1% C r ,  16 S i  and 1@ Mn. 

Two specimens were brazed, but both contained p a r t i a l  f r ac tu re s  o r  
delaminations i n  t h e  pyrolyt ic  graphi te  a f t e r  cooling. 

E f fo r t s  t o  braze pyro ly t ic  graphi te  t o  Mo/O.7$ T i  a l loy,  Zircalloy-2 
A la rge  number of braze a l loys  were and Fansteel  80 a re  reported i n  Reference 3. 

used, but f a i l u r e  due t o  delamination occurred i n  a l l  cases.  When an intermediate 
layer  of ZlIl graphi te  was placed between t h e  pyrolyt ic  graphite and t h e  Mo/O.$ T i ,  
an apparently sound j o i n t  was formed, but  f a i l e d  a t  a shear stress of about 100 p s i  
a t  room temperature. After"c?onsideration of t he  d i f f i c u l t i e s  reported above, and 
t h e  addi t iona l  problems which would be encountered i n  using a brazed j o i n t  a t  high 
temperatures, it was decided t o  c u r t a i l  fu r the r  e f f o r t  i n  brazing. ' 
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VIII. OTHER PYROLYTIC MATERIALS 

Pyrolyt ic  mater ia ls  o ther  than pyrolyt ic  graphi te  were evaluated f o r  
use i n  l iqu id  propel lant  combustion chambers, and t h e i r  present s t a t e  of develop- 
ment i s  described below, based i n  p a r t  on r e s u l t s  reported i n  Reference 1. 

Boron Nitr ide 

Pyrolyt ic  boron n i t r i d e  has superior  oxidation res i s tance  a t  tempera- 
t u re s  below 4000°F. However, a t  higher temperatures it more r ead i ly  oxidizes,  and 
it appears t h a t  boron n i t r i d e  i s  i n f e r i o r  t o  pyrolyt ic  graphite.  It has t h e  same 
type of anisotropy a s  pyrolyt ic  graphite,  but  i s  not a s  strong, s o  t h a t  it i s  not 
promising as  a chamber mater ia l  f o r  oxidizing combustion gases. 

Titanium Ni t r ide  

A t h i n  sample of TiN was tested with a piece of  graphi te  behind it t o  
This mater ia l  i s  qu i t e  b r i t t l e ,  isnd r e s i s t  t he  force of t he  plasma torch  exhaust. 

t he  0.009 inch thickness was completely consumed i n  100 seconds i n  the  plasma torch 
The oxidation r a t e  of TiN could not be obtained from t h i s  t e s t ,  but  structura1l;y it 
does not appear promising. 

A number of carbides were t e s t ed  i n  water vapor during t h i s  and t h e  

Thin 
preceding study (Reference 1). 
With t h e  exception of Sic,  most of t h e  carbides oxidized qu i t e  readi ly .  
coatings of H f C  and Z r C ,  although rap id ly  oxidized, form ref rac tory  oxides with a 
melting temperature of 5020°F f o r  Hf02 and 4850°F f o r  Zr02 .  
t h i n  oxides layers  i s  unpredictable. NbC and TaC oxidized readi ly ,  or spal led of f  
of t h e i r  pyrolyt ic  graphite subs t ra tes .  The sample of T i c  evident ly  oxidized, and 
it Was &lso qui te  b r i t t l e  and d i d  not show any promise as a load Carrying mater ia l .  

They included Z r C ,  H f C ,  NbC, TaC, T i c ,  and Sic .  

Durabi l i ty  of these  

S i l i con  carbide i s  the  only carbide which o f f e r s  any p o s s i b i l i t y  of 
use a s  a load carrying oxidation r e s i s t a n t  mater ia l .  Br i t t l eness  i s  i t s  pr inc ip le  
problem. 
than the  samples t e s t ed  previously, so no more tests were performed during t h i s  
period a 

Samples of s i l i c o n  carbide on graphi te  received from Raytheon were thinne 

Marquardt has developed a S i c  type pyrolyt ic  coating, RM-005 and t h i s  
coat ing i s  present ly  being evaluated under other  programs. Two free-standing cy l -  
inders were made from the  combustion chamber annular i n s e r t s  mentioned i n  Section 
V I  by oxidizing t h e  graphite.  
h a i r  l i n e  cracks. 

The cyl inders  of RM-007 which remained contained 

I Pyroid 

Space Age Materials Corporation has developed a new method of produc- 
t i o n  of pyrolyt ic  graphite which permits deposit ion of thicknesses f a r  i n  excess of 
those possible  by the  conventional techniques. 
Pyroid. Two free-standing Pyroid chambers were procured, using t h e  inner  dimen- 
s ions of t h e  free-standing 100 pound t h r u s t  motor t e s t ed  i n  previous work Reference 

They have named t h i s  mater ia l  
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1. 
i n  Figure 48. 
about 0.75 inch. Numerous delaminations e x i s t  within the  wall, but even so  thir; 
type of s t ruc ture  might be pract icable .  A l a rge  growth i n  the converging sect ion 
i s  shown i n  t h e  X-ray. The two Pyroid motors were not tes ted  because of defects 
which might be eliminated with f u r t h e r  development. 

One of t h e  chambers i s  shown i n  Figure 47, and an X-ray of t h e  motor i s  shown 
The e x i t  inside diameter is about ls25 inches, and the w a l l  thiclmes 

Pyrolytic Graphite Alloys 

The most promising new pyrolyt ic  materials a r e  a l loys  of  ZrC and HfC 
i n  pyrolytic graphite.  Raytheon reports  s t rength of an a l l o y  of 2@ ZrC i n  pyro- 
l y t i c  graphite of  50,000 and 100,000 p s i  f o r  two t e s t s .  The a l l o y  approaches the 
d u c t i l i t y  of pyrolyt ic  graphite which i s  much less b r i t t l e  than the  pure ZrC .  
Similar a l loys  of other  carbides i n  pyrolyt ic  graphite a r e  possible.  No f ree-  
standing shapes of any o f  the  carbide al loys have been made. A s  noted i n  Section 
V, t h e  oxidation resis tance of t h e  2@ ZrC a l l o y  i s  a l so  improved, a t  l e a s t  i n  the  
plasma torch environment. 

Elements alloyed with pyrolyt ic  graphite include tungsten and boron. 
Neither element seems t o  improve oxidation resistance; i n  f a c t  it i s  lower wi th  
tungsten. Boron i n  small amounts was one of the  f irst  substances t o  be alloyed 
w i t h  pyrolyt ic  graphite.  However, it does not seem t o  add t o  t h e  s t rength or oxi- 
dat ion resis tance,  i n  f a c t  there  i s  some evidence t h a t  delaminations occur more 
readi ly  i n  the  boron a l loy .  
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IX. CONCLUSIONS 

1. Free-standing pyrolyt ic  graphite t h r u s t  chambers have been shown 
ana ly t ica l ly  t o  be s t r u c t u r a l l y  f e a s i b l e  f o r  combustion gas temperatures near 
5000°F, and f o r  chamber pressures up t o  about 1-50 psia .  
sures i s  :Limited by t e n s i l e  s t rength and res idua l  stresses of t h e  mater ia l .  

Operation a t  higher pres- 

2. Limitations of f e a s i b i l i t y  a r e  only s l i g h t l y  affected by chamber 
s ize ,  so t h a t  a wide range of t h r u s t  l eve ls  i s  possible.  
wal l  thickness i s  proportional t o  motor dimensions, a l a r g e r  motor can have a 
th icker  wall, so t h a t  it w i l l  be proportionally l e s s  affected by a given amount o f  
erosion than a smaller motor. 

Since permissible chamber 

3.  Free-standing pyrolyt ic  graphite t h r u s t  chambers may be feas ib le  
f o r  combustion gas temperatures above 5000°F, but a n a l y t i c a l  confirmation would re -  
quire  consideration of growth and the  var ia t ion  of e l a s t i c  propert ies  of pyrolyt ic  
graphite w i t h  temperature. 

4. None of t h e  four res idua l  s t r e s s  cases studied were markedly supe- 
r i o r .  
t i o n  w i l l  be r e l a t i v e l y  unfavorable f o r  another loading condition. 
t h e  anisotropic nature of pyrolyt ic  graphite.  
various res idua l  s t r e s s  conditions would require consideration of t h e  temperature 
dependence of  the  e l a s t i c  propert ies  used i n  t h e  analysis .  

A res idua l  stress d i s t r i b u t i o n  which i s  advantageous f o r  one loading condi- 
This i s  due t o  

A f i n e r  discrimination between 

5 .  An increase i n  s t rength of pyrolyt ic  graphite i n  t h r u s t  chamber 
configurations would permit operation with th icker  walls and a t  higher chamber 
pressures.  
between 4000 t o  8000 ps i ,  as contrasted t o  the t e n s i l e  s t rength  of f l a t  samples of 
wel l  over 10,000 p s i .  

The measured s t rength of small t h r u s t  chambers and cylinders i s  usual13 

6. Several  heat treatment h i s t o r i e s  imposed on pyrolyt ic  graphite 

However, it appears t h a t  t h e  average s t rength of the cylinders tested was 
cylinders evidently increased the  s t rength  from about 5000 p s i  t o  as much as 9000 
p s i .  
lower than t h a t  of s imi la r  cylinders produced i n  the  past .  Whether strengthening 
could be achieved i n  pyrolyt ic  graphite which is  i n i t i a l l y  stronger,  or whether ad- 
d i t i o n a l  strengthening could be achieved by f u r t h e r  heat treatment i s  not known. 

7. Strength and res idua l  s t r e s s  i n  pyrolyt ic  graphite cylinders 
f luc tua tes  considerably for supposedly i d e n t i c a l  specimens. 

representat ive samples. 

All t e s t i n g  should be 
.done i n  s u f f i c i e n t  quant i t ies  t o  avoid drawing erroneous conclusions based on non- 

8. Pyrolytic boron n i t r i d e  i s  i n f e r i o r  t o  pyrolyt ic  graphite as an 
oxidation r e s i s t a n t  mater ia l  i n  t h e  combustion chamber environment. 
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9 .  An a l l o y  of 2@ zirconium carbide shows a promising improvement i r  

j a t ion  res i s tance  over t h a t  of pyrolyt ic  graphite,  based on plasma torch  tests.  
Tensile s t rength  of t h i s  mater ia l  appears t o  be much grea te r  than pyrolyt ic  graph- 
i t e .  

10. Pyroid, a new form of pyro ly t ic  graphite,  RM-005, a s i l i c o n  
carbide type pyrolyt ic  mater ia l ,  and an a l l o y  of zirconium carbide i n  pyrolyt ic  
graphi te  a r e  the  only pyrolyt ic  mater ia ls  besides conventional pyrdlyt ic  graphi te  
which were found t o  be po ten t i a l ly  usefu l  i n  l iqu id  propel lant  t h r u s t  chambers. 

X. RECOMMENDATIONS 

1. Further study of heat t r e a t i n g  e f f e c t s  is  recommended t o  b e t t e r  
understand i t s  capab i l i t y  f o r  strengthening of pyrolyt ic  graphi te .  

2 .  Reasons f o r  t h e  difference between t e n s i l e  s t rength  of pyro ly t ic  
graphi te  i n  f l a t  specimens and cyl inders  should be s tudied.  
tempt t o  co r re l a t e  t e n s i l e  s t rength  with mandrel design, deposit ion conditions,  
nodule s i z e ,  and o ther  var iab les  of production. 

Such a study should a t  

3 .  Analysis and t e s t i n g  of advanced pyro ly t ic  mater ia ls  f o r  t h r u s t  
chamber appl icat ions should be continued. 
pyro ly t ic  graphite', a s i l i c o n  carbide type mater ia l  and Pyroid a r e  espec ia l ly  
recommended f o r  fu r the r  study. 

An a l loy  of 2@ zirconium carbide i n  

4. Motor f i r i n g s  of a tapered pyro ly t ic  graphi te  t h r u s t  chamber 
should be continued i n  order t o  f u l l y  def ine i t s  operating cha rac t e r i s t i c s .  

5 .  All t e s t i n g  of  pyro ly t ic  graphi te  should be done i n  quan t i t i e s  
s u f f i c i e n t l y  la rge  t o  define the  va r i a t ion  as  wel l  as  t h e  average propert ies  of 
supposedly i d e n t i c a l  i t e m s .  
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TABLE I 

AVERAGE WALL THICKNESS OF TUBES BEFORE MACHINING 

Tube 
No. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

Thickness 
( i n . )  

0.067 

0.065 

0 073 

0.072 

0.069 

0.069 

0.071 

0 075 

0.068 

0.068 

0.068 

0.068 

0.068 

Tube 
No. 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

Thickness 
( i n . )  

0.070 

0.067 

0.067 

0 9 075 

0.072 

0.072 

0.072 

0.074 

0.070 

0.065 

0.067 

0.065 

0.065 
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TABU I1 

A"EAL HISTORY OF PYROLYTIC GRAPHITE TUBES 
- 
Tube 
No 

1 
2 

3 
4 
5 
6 

8 
9 

10 

11 
12 

13 
14 
15 

16 

17 
18 
19 
20 
21 
22 
23 
24 
25 
26 

Anneal 
'Furnace 

Radiation 

Radiation 

Radiation 

Radfation 
Radiation 

Radiation 

Radiation 

c-w 

c-w 

c-w 
c -w 
Radiation 

c -w 

c-w 

Marshall 

Marshall 

c-w 
e-W 
C-W 
c -W 

- 

Weight Before 
(gms)  

54.6134 
54.0611 
54.9806 

54.8272 
54 9 4379 

55.0208 
55 8538 

55 9 2753 

55 ' 5942 
55.8840 
55 8603 

55 6717 

54 09776 

55.8712 
55 0 5507 
55.2618 
55 ' 8007 
55 4750 
55 7603 

54.0521 

Weight After 
( P S I  

54.0773 
53 5929 
54.844 
53 9071 
50.9916 
52 0931 

53 3264 
53 9 8520 

55 -2711 

-- 
-- 

53 * 7720 

55.6724 

54 9 9705 

54 3906 
54 *9794 
55.2576 
55 9 7935 
55 9 4748 
35 -7583 

Anneal History 

50 cycles between 500°F-20000F 
50 cycles between 500°F-20000F 
10 cycles between 300°F-20000F 
10 cycles between 500°F-20000F 
230 cycles between 1000°F-20000F 
250 cycles between 1000°F-2000":F 
N6 heat t r e a t  
250 cycles between 1000"F-2000°F 
30 cycles between 2~00"F-3000°F 
i n  7 hours 

30 cycles between 2~00°F-30000F 
i n  7 hours 
7 hours a t  2500°F 
7 hours a t  2500°F 
250 cycles between 1000"F-2000"F 

No heat t r e a t  

7 cycles between 2500"F-4500°F 
i n  7 hours 

7 cycles between 250O0F-45OO0F 
in 7 hours 

30 hours a t  2500°F 
30 hours a t  2500°F 
25 hours a t  3200°F 
25 hours a t  3200°F 
7 hours a t  3200°F 
7 hours a t  3200°F 
No heat  t r e a t  
No heat t r e a t  

No heat t r e a t  

No heat t rea t  

* 
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Tube 
No 

1 

3 

5 

*7 

8 

10 

12 

13 

*14 

1.5 

17 

19 

21 

*3 

++25 

TABLEI I11 

RESULTS OF PRESSURE: RUPTLTRE: TEST 

Rupture 
Pressure 
(PSid 

2 10 

160 

315 

156 

143 

200 

195 

245 

74 

140 

340 

120 

3 15 

70 

60 

Inside 
Rad ius 
(in.) 

1.007 

1.004 

1.007 

1.0* 

1.009 

1.006 

1.003 

1.008 

1.006 

1.009 

1 005 

1.002 

10 002 

1 008 

1 s 007 

* Tested in as-deposited condition. 
JI-k Approximate 

Wall 
Thickness 
(in.) 

0.058 

0.059 

0 0055 
0.03** 

0 -055 

0.059 

0.061 

0 4057 

0 059 

0.058 

0 -059 

0 059 

0.060 

0 0 059 

0.060 

Pressure 
Stress 
(Psi) 

3650 

2720 

5770 
2840* 

2620 

3410 

3210 

4330 

1260 

2440 

5790 

2040 

5260 

1200 

10 10 

UNCLA S S I F I ED - 40 - 



VAN %Iy"@d NUYS, CALIFORNIA - lH0n 59922 
UNCLAS S 1 F I ED 

Circumfer 
Outside 

TABLE I V  

RFSULTS OF RFSIDUAL STRESS TEST 

i t i a l  
Inside 

Tube 
No. 

2 

4 

6 .  

9 

11 

18 

20 

22 

w4 

w 6  

* Tested 

Distance 
From 
End 

0.5 
2 .o 

0.5 
2 .o 

0 - 5  
2.0 

0 - 5  
2 .o 

0.5 
2 .o 

0.5 
2.0 

0.5 
2 .o 

0.5 
2.0 

0.5 
2 .o 

0.5 
2 .o 

t - 
ri 

0.057 
0.057 

0.056 
0 *057 

0.054 
0.054 

0.058 
0.058 

0 057 
0 059 

0.058 
0 9 057 

0.058 
0.058 

0.058 
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APPENDIX A 

SUMMARY OF NOMENCLATURE 

Symbo 1 Description Unit - 
AC 

A 

a 

a 

B 

0 

1 

C 

C 

cF 

c2 

c3 
C* 

D 

D* 

E 

F Z z  

O/F 

H 
j 

C 
P 

r 
r 

r 
0 

i 
S 

T 

Engine cross-sect ional  flow area 

Dimensionless quant i ty  defined by Eq. (22) 
Constant defined by Eq. (27) 

Constant defined by Eq. (27) 

Constant defined by Eq. (31) 

E las t i c  s t i f fnes ses  

Constant defined by Eq. (32) 

Constant of in tegra t ion  

Thrust Coeff ic ient  

Constant of in tegra t ion  

Constant a x i a l  s t r a i n  

Charac te r i s t ic  ve loc i ty  

Constant defined by Eq. (33) 

Throat diameter 

Modulus of  e l a s t i c i t y  (Young's Modulus) 

Axial  load on cy l ind r i ca l  combustion chamber 

Constants defined f o r  j = 1 -5 by Eqs. (36) t o  (40) 

Oxidizer/fuel flow r a t e  r a t i o  

Chamber pressure 

Radius of motor s h e l l  

Outside radius of m t o r  s h e l l  

Inside radius of motor s h e l l  

E l a s t i c  compliances 

Temperature increment from s t r e s s - f r ee  s t a t e  
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APPENDIX A (Continued) 

Symbol Description Unit 
~~ 

Combustion gas t o t a l  temperature 

Thickness of motor s h e l l  

Radial def lec t ion  of motor s h e l l  

I n t e g r a l  defined by Eq. ( 2 5 )  

I n t e g r a l  defined by Eq. (26) 

Coefficient of thermal expansion 

E l a s t i c  s t r a i n  

Chamber contract ion r a t i o  

Thermal s t r e s s  coe f f i c i en t  

Poisson's r a t i o  

E l a s t i c  s t r e s s  

Hoop s t r e s s  

Axial stress 

Defined by Eq. ( 2 3 )  

"F 

i n  

i n .  
-- 

in./in./"F 

i n .  / i n .  
-- 

-- 
l b / in  . 
Ps i  
p s i  
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